Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6648))

Abstract

A set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are many-one reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.

S. Jain has been supported in part by NUS grants C252-000-087-001 and R252-000-420-112; F. Stephan has been supported in part by NUS grant R252-000-420-112; J. Teutsch has been supported by the Deutsche Forschungsgemeinschaft grant ME 1806/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaitin, G.J.: Incompleteness theorems for random reals. Advances in Applied Mathematics 8(2), 119–146 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. The Journal of Symbolic Logic 23, 309–316 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lachlan, A.H.: On the lattice of recursively enumerable sets. Transactions of American Mathematical Society 130, 1–37 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  6. Myhill, J.: Solution of a problem of Tarski. The Journal of Symbolic Logic 21(1), 49–51 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nies, A.: Computability and randomness. Oxford University Press, New York (2009)

    Book  MATH  Google Scholar 

  8. Odifreddi, P.: Classical recursion theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  9. Post, E.: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society 50, 284–316 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  10. Robinson, R.W.: Simplicity of recursively enumerable sets. The Journal of Symbolic Logic 32, 162–172 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rogers Jr., H.: Theory of recursive functions and effective computability. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  12. Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pacific Journal of Mathematics 31(1), 215–231 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  14. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25(6), 83 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, S., Stephan, F., Teutsch, J. (2011). Closed Left-R.E. Sets. In: Ogihara, M., Tarui, J. (eds) Theory and Applications of Models of Computation. TAMC 2011. Lecture Notes in Computer Science, vol 6648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20877-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20877-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20876-8

  • Online ISBN: 978-3-642-20877-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics