Skip to main content

Alterung der Netzhaut und des retinalen Pigmentepithels

  • Chapter
Book cover Altersabhängige Makuladegeneration
  • 1264 Accesses

Zusammenfassung

Altern wurde definiert als »eine mit der Zeit stetig zunehmende Reihe von Veränderungen, die im fortgeschrittenen Alter mit immer höherer Krankheitsanfälligkeit und Tod einhergehen bzw. für sie verantwortlich sind« [1]. Auch das Auge macht dabei keine Ausnahme; Katarakt und Netzhautdegeneration sind häufige Begleiterscheinungen des Alterns [2]. Vor allem die Retina ist empfindlich für Altersveränderungen, da

  • die Mehrheit der Zelltypen nicht teilungsfähig sind, so dass sich Schäden kumulieren,

  • Photorezeptorzellen und die Zellen des retinalen Pigmentepithels metabolisch hoch aktiv sind,

  • die Retina eine hohe Sauerstoffversorgung aufweist, was in Kombination mit Lichtexposition im kurzwelligen Bereich zu oxidativen Schäden führt und

  • eine Akkumulation toxischer Stoffe wie Lipofuszin erfolgt, die die Sensibilität gegenüber Licht erhöhen [3–5].

Ich bedanke mich bei Lynn Shaw für die Bebilderung und bei Prajitha Thampi, Haripriya Vittal Rao und Sayak Mitter für das Korrekturlesen des Manuskripts. Die Forschung des Autors wird durch die NIH-Förderung EY019688 und die AHAF-Förderung M2009024 unterstützt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78(11): 7124–8

    PubMed  CAS  Google Scholar 

  2. Margrain TH, Boulton ME (2005) Sensory impairment. In: Johnson M (ed) The Cambridge Handbook of Age and Aging. University Press, Cambridge, p 121–130

    Google Scholar 

  3. Boulton M (1991) Ageing of the retinal pigment epithelium. In: Osborne N, Chader G (eds) Progress in Retinal Research. Pergamon Press, Oxford, p 125–151

    Google Scholar 

  4. Zarbin MA (2004) Current concepts in the pathogenesis of agerelated macular degeneration. Arch Ophthalmol 122(4): 598–614

    PubMed  Google Scholar 

  5. de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355(14): 1474–85

    PubMed  Google Scholar 

  6. Bengtson VL, Putney NM, Johnson ML (2005) In: Johnson M (ed) The Cambridge Handbook of Age and Aging. University Press, Cambridge, p 3–20

    Google Scholar 

  7. Carnes BA, Staats DO, Sonntag WE (2008) Does senescence give rise to disease? Mech Ageing Dev 129(12): 693–9

    PubMed  Google Scholar 

  8. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3): 298–300

    PubMed  CAS  Google Scholar 

  9. Boulton ME (2008) Aging of the retinal pigment epithelium. In: Tombran-Tink J, Barnstable CJC (eds) Visual Transduction and Non-Visual Light Perception. Humana Press, p 403–420

    Google Scholar 

  10. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4): 145–7

    PubMed  CAS  Google Scholar 

  11. Miquel J, et al. (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6): 575–91

    PubMed  CAS  Google Scholar 

  12. Jarrett SG, et al. (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27(6): 596–607

    PubMed  CAS  Google Scholar 

  13. Wang AL, et al. (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14: 644–51

    PubMed  Google Scholar 

  14. Nordgaard CL, et al. (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7): 2848–55

    PubMed  Google Scholar 

  15. Kenney MC, et al. (2010) Characterization of Retinal and Blood Mitochondrial DNA from Age-related Macular Degeneration Patients. Invest Ophthalmol Vis Sci [epub ahead of print]

    Google Scholar 

  16. Kanski J (2003) Clinical Ophthalmology: A Systematic Approach. Heinemann, Butterworth

    Google Scholar 

  17. Salvi SM, Akhtar S, Currie Z (2006) Ageing changes in the eye. Postgrad Med J 82(971): 581–7

    PubMed  CAS  Google Scholar 

  18. Guirao A, et al. (1999) Average optical performance of the human eye as a function of age in a normal population. Invest Ophthalmol Vis Sci 40(1): 203–13

    PubMed  CAS  Google Scholar 

  19. Langrova H, et al. (2008) Age-related changes in retinal functional topography. Invest Ophthalmol Vis Sci 49(11): 5024–32

    PubMed  Google Scholar 

  20. Mohidin N, Yap MK, Jacobs RJ (1999) Influence of age on the multifocal electroretinography. Ophthalmic Physiol Opt 19(6): 481–8

    PubMed  CAS  Google Scholar 

  21. Tzekov RT, Gerth C, Werner JS (2004) Senescence of human multifocal electroretinogram components: a localized approach. Graefes Arch Clin Exp Ophthalmol 242(7): 549–60

    PubMed  Google Scholar 

  22. Bonnel S, Mohand-Said S, Sahel JA (2003) The aging of the retina. Exp Gerontol 38(8): 825–31

    PubMed  Google Scholar 

  23. Birch DG, Anderson JL (1992), Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11): 1571–6

    PubMed  CAS  Google Scholar 

  24. Jackson GR, Owsley C (2000) Scotopic sensitivity during adulthood. Vision Res 40(18): 2467–73

    PubMed  CAS  Google Scholar 

  25. Owsley C, et al. (2000) Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(1): 267–73

    PubMed  CAS  Google Scholar 

  26. Danias J, et al. (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci 44(12): 5151–62

    PubMed  Google Scholar 

  27. Neufeld AH, et al. (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75(5): 521–8

    PubMed  CAS  Google Scholar 

  28. Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48(6): 2824–30

    PubMed  Google Scholar 

  29. Alamouti B, Funk J (2003) Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 87(7): 899–901

    PubMed  CAS  Google Scholar 

  30. Eriksson U, Alm A (2009) Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol 93(11): 1448–52

    PubMed  CAS  Google Scholar 

  31. Cavallotti C, et al. (2004) Age-related changes in the human retina. Can J Ophthalmol 39(1): 61–8

    PubMed  Google Scholar 

  32. Feuer WJ, et al. (2010) Topographic Differences in the Agerelated Changes in the Retinal Nerve Fiber Layer of Normal Eyes Measured by Stratus Optical Coherence Tomography. J Glaucoma [epub ahead of print]

    Google Scholar 

  33. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1): 1–17

    PubMed  CAS  Google Scholar 

  34. Curcio CA, et al. (1993) Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34(12): 3278–96

    PubMed  CAS  Google Scholar 

  35. Leveillard T, et al. (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36(7): 755–9

    PubMed  CAS  Google Scholar 

  36. Chalmel F, et al. (2007) Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Mol Biol 8: 74

    PubMed  Google Scholar 

  37. Fridlich R, et al. (2009) The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol Cell Proteomics 8(6): 1206–18

    PubMed  CAS  Google Scholar 

  38. Aggarwal P, Nag TC, Wadhwa S (2007) Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 32(2): 293–8

    PubMed  CAS  Google Scholar 

  39. Liets LC, et al. (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proc Natl Acad Sci U S A 103(32): 12156–60

    PubMed  CAS  Google Scholar 

  40. Terzibasi E, et al. (2009) Age-dependent remodelling of retinal circuitry. Neurobiol Aging 30(5): 819–28

    PubMed  CAS  Google Scholar 

  41. Chen M, et al. (2010) Immune activation in Retinal Aging: A Gene Expression Study. Invest Ophthalmol Vis Sci [epub ahead of print]

    Google Scholar 

  42. Chan-Ling T, et al. (2007) Inflammation and breakdown of the blood-retinal barrier during »physiological aging« in the rat retina: a model for CNS aging. Microcirculation 14(1): 63–76

    PubMed  Google Scholar 

  43. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28(5): 348–68

    PubMed  Google Scholar 

  44. Marmor F, Wolfensberger TJ (1998) The Retinal Pigment Epithelium. Oxford University Press, New York Oxford

    Google Scholar 

  45. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the Human Eye. Saunders, Philadelphia

    Google Scholar 

  46. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15(Pt 3): 384–9

    PubMed  CAS  Google Scholar 

  47. Gouras P, et al. (2010) Topographic and age-related changes of the retinal epithelium and Bruch‘s membrane of rhesus monkeys. Graefes Arch Clin Exp Ophthalmol 248(7): 973–84

    PubMed  Google Scholar 

  48. Streeten BW (1969) Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 81(3): 383–94

    PubMed  CAS  Google Scholar 

  49. Marshall J (1987) The ageing retina: physiology or pathology? Eye 1: 282–295

    PubMed  Google Scholar 

  50. Burke JM, BS McKay, GJ (1991) Jaffe Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells. Invest Ophthalmol Vis Sci 32(7): 2042–6

    PubMed  CAS  Google Scholar 

  51. Burke JM, Twining SS (1988) Regional comparisons of cathepsin D activity in bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 29(12): 1789–93

    PubMed  CAS  Google Scholar 

  52. Cabral L, et al. (1990) Regional distribution of lysosomal enzymes in the canine retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(4): 670–6

    PubMed  CAS  Google Scholar 

  53. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, correlations in normal human eyes. Am J Ophthalmol 121(2): 181–9

    PubMed  CAS  Google Scholar 

  54. Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43(10): 3312–8

    PubMed  Google Scholar 

  55. Dorey CK, et al. (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30(8): 1691–9

    PubMed  CAS  Google Scholar 

  56. Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25(2): 195–200

    PubMed  CAS  Google Scholar 

  57. Burke JM Hjelmeland LM (2005) Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv 5(4): 241–9

    PubMed  Google Scholar 

  58. Boulton M, et al. (2004) The photoreactivity of ocular lipofuscin. Photochem Photobiol Sci 3(8): 759–64

    PubMed  CAS  Google Scholar 

  59. Boulton ME (2009) Lipofuscin of the retinal pigment epithelium, in Fundus Autofluorescence, N. Lois and J.V. Forrester, Editors. Wolters Kluwer/Lipincott Williams & Wilkins, Philadelphia, p 14–26

    Google Scholar 

  60. Rozanowska M, Rozanowski B (2008) Visual transduction and age-related changes in lipofuscin. In: Tombran-Tink J, Barnstable CJ (eds) Visual Transduction and Non-Visual Light Perception. Humana Press, p 421–462

    Google Scholar 

  61. Ng KP, et al. (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7(7): 1397–405

    PubMed  CAS  Google Scholar 

  62. Sparrow JR Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5): 595–606

    PubMed  CAS  Google Scholar 

  63. Crouch RK, et al. (2010) Human A2E levels are higher in the peripheral (extramacular) RPE than in the macular region of the RPE IOVS. ARVO-E abstract 1300

    Google Scholar 

  64. Boulton M, et al. (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30(9): 1291–303

    PubMed  CAS  Google Scholar 

  65. Clancy KMR, et al. (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J Phys Chem B 104: 12098–12101

    CAS  Google Scholar 

  66. Haralampus-Grynaviski NM, et al. (2001) Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Photochem Photobiol 74(2): 364–8

    PubMed  CAS  Google Scholar 

  67. Rozanowska M, et al. (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270(32): 18825–30

    PubMed  CAS  Google Scholar 

  68. Rozanowska M, et al. (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med 24(7–8): 1107–12

    PubMed  CAS  Google Scholar 

  69. Gaillard ER, et al. (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61(5): 448–53

    PubMed  CAS  Google Scholar 

  70. Rozanowska M, et al. (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroforminsoluble components. Invest Ophthalmol Vis Sci 45(4): 1052–60

    PubMed  Google Scholar 

  71. Davies S, et al. (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 31(2): 256–65

    PubMed  CAS  Google Scholar 

  72. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42(12): 3041–6

    PubMed  CAS  Google Scholar 

  73. Godley BF, et al. (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22): 21061–6

    PubMed  CAS  Google Scholar 

  74. Schutt F, et al. (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41(8): 2303–8

    PubMed  CAS  Google Scholar 

  75. Sparrow JR Cai B (2001) Blue light-induced apoptosis of A2Econtaining RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42(6): 1356–62

    PubMed  CAS  Google Scholar 

  76. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7): 1981–9

    PubMed  CAS  Google Scholar 

  77. Pawlak A, et al. (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem Photobiol 77(3): 253–8

    PubMed  CAS  Google Scholar 

  78. Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81(6): 1305–30

    PubMed  CAS  Google Scholar 

  79. Ben-Shabat S, et al. (2002) Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, evidence of singlet oxygen involvement. Angew Chem Int Ed Engl 41(5): 814–7

    PubMed  CAS  Google Scholar 

  80. Zhou J, et al. (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103(44): 16182–7

    PubMed  CAS  Google Scholar 

  81. Bergmann M, et al. (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of agerelated macular degeneration. FASEB J 18(3): 562–4

    PubMed  CAS  Google Scholar 

  82. Holz FG, et al. (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40(3): 737–43

    PubMed  CAS  Google Scholar 

  83. Liu J, et al. (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(-/-) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49(2): 772–80

    PubMed  Google Scholar 

  84. Vives-Bauza C, et al. (2008) The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem 283(36): 24770–80

    PubMed  CAS  Google Scholar 

  85. Finnemann SC, Leung LW, Rodriguez-Boulan E (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A 99(6): 3842–7

    PubMed  CAS  Google Scholar 

  86. Drenos F, Kirkwood TB (2005) Modelling the disposable soma theory of ageing. Mech Ageing Dev 126(1): 99–103

    PubMed  Google Scholar 

  87. Boulton ME (1998) The role of melanin in the RPE. In: Marmor M, Wolfensberger T (eds) The Retinal Pigment Epithelium. University Press, Oxford p 68–85

    Google Scholar 

  88. Weiter JJ, et al. (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2): 145–52

    PubMed  CAS  Google Scholar 

  89. Kayatz P, et al. (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42(1): 241–6

    PubMed  CAS  Google Scholar 

  90. Sarna T, et al. (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76(1): 89–98

    PubMed  CAS  Google Scholar 

  91. Sarna T (1992) Properties and function of the ocular melanin – a photophysical view. J Photochem Photobiol B Biol 12: 215–258

    CAS  Google Scholar 

  92. Zareba M, et al. (2006) Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med 40(1): 87–100

    PubMed  CAS  Google Scholar 

  93. Rozanowski B, et al. (2008) The phototoxicity of aged human retinal melanosomes. Photochem Photobiol 84(3): 650–7

    PubMed  CAS  Google Scholar 

  94. Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17(7): 583–600

    PubMed  CAS  Google Scholar 

  95. Feher J, et al. (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7): 983–93

    PubMed  CAS  Google Scholar 

  96. Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147: 21–9

    PubMed  CAS  Google Scholar 

  97. Jarrett S, AS Lewin, Boulton ME (2010) The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 44: 179–190

    PubMed  CAS  Google Scholar 

  98. Karunadharma PP, et al. (2010) Mitochondrial DNA Damage as a Potential Mechanism for Age-related Macular Degeneration. Invest Ophthalmol Vis Sci [epub ahead of print]

    Google Scholar 

  99. Udar N, et al. (2009) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(6): 2966–74

    PubMed  Google Scholar 

  100. Barreau E, et al. (1996) Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci 37(2): 384–91

    PubMed  CAS  Google Scholar 

  101. Nordgaard CL, et al. (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47(3): 815–22

    PubMed  Google Scholar 

  102. Nordgaard CL., et al. (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7): 2848–2855

    PubMed  Google Scholar 

  103. Decanini A, et al. (207) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143(4): 607–15

    Google Scholar 

  104. Godley BF, et al. (2008) Mitochondrial DNA repair capacity decreases with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 49: ARVO E-abstract

    Google Scholar 

  105. Justilien V, et al. (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48(10): 4407–20

    PubMed  Google Scholar 

  106. Imamura Y, et al. (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103(30): 11282–7

    PubMed  CAS  Google Scholar 

  107. Jarrett SG, Boulton ME (2005) Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med 38(10): 1382–91

    PubMed  CAS  Google Scholar 

  108. Ballinger SW, et al. (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68(6): 765–72

    PubMed  CAS  Google Scholar 

  109. Jarrett SG, Boulton ME (2007) Poly(ADP-ribose) polymerase offers protection against oxidative and alkylation damage to the nuclear and mitochondrial genomes of the retinal pigment epithelium. Ophthalmic Res 39(4): 213–23

    PubMed  CAS  Google Scholar 

  110. Schutt F, et al. (2007) Accumulation of A2-E in mitochondrial membranes of cultured RPE cells. Graefes Arch Clin Exp Ophthalmol 245(3): 391–8

    PubMed  CAS  Google Scholar 

  111. Hayasaka S (1989) Aging changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 33(1): 36–42

    PubMed  CAS  Google Scholar 

  112. Boulton M, et al. (1994) Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 78(2): 125–9

    PubMed  CAS  Google Scholar 

  113. Ogawa T, et al. (2005) Changes in the spatial expression of genes with aging in the mouse RPE/choroid. Mol Vis 11: 380–6

    PubMed  CAS  Google Scholar 

  114. Mizushima N, et al. (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182): 1069–75

    PubMed  CAS  Google Scholar 

  115. Cuervo AM, et al. (2005) Autophagy and aging: the importance of maintaining »clean« cells. Autophagy 1(3): 131–40

    PubMed  Google Scholar 

  116. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2): 55–72

    PubMed  CAS  Google Scholar 

  117. Klionsky D, et al. (2007) How shall I eat thee? Autophagy 3(5): 413–6

    PubMed  Google Scholar 

  118. Sohal RS (1981) Age Pigments. Elsevier/North-Holland Biomedical Press

    Google Scholar 

  119. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211(2): 134–43

    PubMed  CAS  Google Scholar 

  120. Boulton M, et al. (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30(1): 82–9

    PubMed  CAS  Google Scholar 

  121. Wassell J, et al. (1998) Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 39(8): 1487–92

    PubMed  CAS  Google Scholar 

  122. Nilsson SE, et al. (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106(1): 13–6

    PubMed  Google Scholar 

  123. Burke JM, Skumatz CM (1998) Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 39(8): 1478–86

    PubMed  CAS  Google Scholar 

  124. Krohne TU, et al. (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3): 465–71

    PubMed  CAS  Google Scholar 

  125. Haralampus-Grynaviski NM, et al. (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci U S A 100(6): 3179–84

    PubMed  CAS  Google Scholar 

  126. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8(1–2): 152–62

    PubMed  CAS  Google Scholar 

  127. Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462(2): 220–30

    PubMed  CAS  Google Scholar 

  128. Wang AL, et al. (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1): e4160

    PubMed  Google Scholar 

  129. Winkler BS, et al. (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5: 32

    PubMed  CAS  Google Scholar 

  130. Beatty S, et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2): 115–34

    PubMed  CAS  Google Scholar 

  131. Halliwell B, Gutteridge JM (2007) Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, New York

    Google Scholar 

  132. AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10): 1417–36

    Google Scholar 

  133. Barker FM, 2nd (2010) Dietary supplementation: effects on visual performance and occurrence of AMD and cataracts. Curr Med Res Opin 26(8): 2011–23

    PubMed  CAS  Google Scholar 

  134. Liles MR, Newsome DA, Oliver PD (1991) Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol 109(9): 1285–8

    PubMed  CAS  Google Scholar 

  135. Miyamura N, et al. (2004) Topographic and age-dependent expression of heme oxygenase-1 and catalase in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 45(5): 1562–5

    PubMed  Google Scholar 

  136. Friedrichson T, et al. (1995) Vitamin E in macular and peripheral tissues of the human eye. Curr Eye Res 14(8): 693–701

    PubMed  CAS  Google Scholar 

  137. Castorina C, et al. (1992) Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 17(6): 599–604

    PubMed  CAS  Google Scholar 

  138. Beatty S, et al. (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42(2): 439–46

    PubMed  CAS  Google Scholar 

  139. Maeda A, Crabb JW, Palczewski K (2005) Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry 44(2): 480–9

    PubMed  CAS  Google Scholar 

  140. Liao JH, Lee JS, Chiou SH (2002) C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine alphaB-crystallin. Biochem Biophys Res Commun 297(2): 309–16

    PubMed  CAS  Google Scholar 

  141. Organisciak D, et al. (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 82(4): 1088–96

    PubMed  CAS  Google Scholar 

  142. Jarrett SG, Albon J, Boulton M (2006) The contribution of DNA repair and antioxidants in determining cell type-specific resistance to oxidative stress. Free Radic Res, 40(11): 1155–65

    CAS  Google Scholar 

  143. Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102 Suppl 10: 25–8

    PubMed  Google Scholar 

  144. Booij JC, et al. (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29(1): 1–18

    PubMed  CAS  Google Scholar 

  145. Curcio CA, et al. (2009) Aging, age-related macular degeneration, the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28(6): 393–422

    PubMed  CAS  Google Scholar 

  146. Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18(1): 59–90

    PubMed  CAS  Google Scholar 

  147. Hagema, GS, Mullins RF (1999) Molecular composition of drusen as related to substructural phenotype. Molecular Vision 5: 28

    Google Scholar 

  148. Anderson DH, Radeke MJ, Gallo NB et al. (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95–112

    PubMed  CAS  Google Scholar 

  149. Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye 5: 1–12

    PubMed  Google Scholar 

  150. Chong NH, et al. (2005) Decreased thickness and integrity of the macular elastic layer of Bruch‘s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166(1): 241–51

    PubMed  Google Scholar 

  151. Ugarte M, Hussain AA, Marshall J (2006) An experimental study of the elastic properties of the human Bruch‘s membranechoroid complex: relevance to ageing. Br J Ophthalmol 90(5): 621–6

    PubMed  CAS  Google Scholar 

  152. Handa JT, et al. (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3): 775–9

    PubMed  CAS  Google Scholar 

  153. Hewitt AT, Nakazawa K, Newsome DA (1989) Analysis of newly synthesized Bruch‘s membrane proteoglycans. Invest Ophthalmol Vis Sci 30(3): 478–86

    PubMed  CAS  Google Scholar 

  154. Marshall J, et al. (1998) Aging and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The Retinal Pigment Epithelium. Oxford University Press, New York Oxford, p 669–692

    Google Scholar 

  155. Friedman DS, et al. (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4): 564–72

    PubMed  Google Scholar 

  156. Martin JE, Sheaff MT (2007) The pathology of ageing: concepts and mechanisms. J Pathol 211(2): 111–3

    PubMed  CAS  Google Scholar 

  157. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7): 1236–49

    PubMed  CAS  Google Scholar 

  158. Solbach U, et al. (1997) Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 17(5): 385–9

    PubMed  CAS  Google Scholar 

  159. Ambati J, et al. (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11): 1390–7

    PubMed  CAS  Google Scholar 

  160. Malek G, et al. (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A 102(33): 11900–5

    PubMed  CAS  Google Scholar 

  161. Bird A, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc UK 105: 674–682

    PubMed  Google Scholar 

  162. Archer D (1983) Retinal neovascularization. Trans Ophthalmol Soc UK 103: 2–26

    PubMed  Google Scholar 

  163. Eagle RC, Jr. (1984) Mechanisms of maculopathy. Ophthalmology 91(6): 613–25

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boulton, M.E. (2011). Alterung der Netzhaut und des retinalen Pigmentepithels. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20870-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20870-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20869-0

  • Online ISBN: 978-3-642-20870-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics