Skip to main content

Zusammenfassung

Das Endstadium einer fortgeschrittenen altersabhängigen Makuladegeneration (AMD) kann einen irreversiblen und schweren Sehverlust darstellen. Das Fortschreiten der Sehverschlechterung und die Quantifizierung der finalen Restfunktion wird derzeit mit Hilfe diagnostischer Tests bestimmt, die auf den physiologischen und mathematischen Gesetzmäßigkeiten der Psychophysik basieren [18]. Der bekannteste dieser Tests ist die Messung der Sehschärfe: ein klassischer psychophysischer Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bearelly S, Chau FY, Koreishi A et al. (2009) Spectral Domain optical cohenrence tomography imaging of geographic atrophy margins. Ophtahlmology 116: 1762–1769

    Article  Google Scholar 

  2. Bolz M, Simader C, Ritter M et al. (2010) Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related maculare degeneration. Br J Ophthalmol 94: 185–189

    Article  PubMed  CAS  Google Scholar 

  3. Chieh JJ, Stinnett SS, Toth CA (2008) Central and pericentral retinal sensitivity after macular translocation surgery. Retina 28: 1522–1529

    Article  PubMed  Google Scholar 

  4. Cohen Sy, Lamarque F, Saucet JC, et al. (2003) Filling-in phenomenon in patients with age-related macular degeneration: differences regarding uni-or bilaterality of central scotoma. Graefes Arch Clin Exp Ophthalmol 241: 785–791

    Article  PubMed  Google Scholar 

  5. Doris N, Hart PM, Chakravarthy U, et al. (2001) Relation between macular morphology and visual function in patients with choroidal neovascularization of age related macular degeneration. Br J Ophthalmol 85: 184–188

    Article  PubMed  CAS  Google Scholar 

  6. Ergun E, Maar N, Radner W, et al. (2003) Scotoma size and reading speed in patients with subfoveal occult choroidal neovascularisation in age-related macular degeneration. Ophthalmology 110: 65–69

    Article  PubMed  Google Scholar 

  7. Fujii GY, de Juan E, Sunness JS et al. (2002) Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. Ophthalmology 109: 1737–1744

    Article  PubMed  Google Scholar 

  8. Fujii Gy, De Juan E Jr, Humayun MS, et al. (2003) Characteristics of visual loss by scanning laser opthalmoscope microperimetry in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol 136: 1067–1078

    Article  PubMed  Google Scholar 

  9. Guez Je, Le Gargasson JF, Rigaudiere F, et al. (1993) Is there a systematic location for the pseudofovea in patients with central scotoma? Vision Res 33: 1271–1279

    Article  PubMed  CAS  Google Scholar 

  10. Holz FG, Bellman C, Staudt S, et al. (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42: 1051–1056

    PubMed  CAS  Google Scholar 

  11. Johnson PT, Brown MN, Pulliam BC et al. (2005) Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Invest Ophthalmol Vis Sci 46:4788–4795

    Article  PubMed  Google Scholar 

  12. Loewenstein A, Sunness SS, Bressler NM, et al. (1998) Scanning laser ophthalmoscope fundus perimetry after surgery for choroidal neovascularization. Am J Ophthalmol 125: 657–665

    Article  PubMed  CAS  Google Scholar 

  13. Midena E, Convento E, Radin PP et al. (2007) Macular automatic fundus perimetry threshold versus standard perimetry threshold. Europ Journal Ophthalmol 17: 65–68

    Google Scholar 

  14. Midena E, Radin PP, Pilotto E, et al. (2004) Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study. Sem Ophthalmol 19: 55–61

    Article  Google Scholar 

  15. Midena E, Radin PP, Convento E (2007) Liquid crystal display microperimetry In: Midena E, editor. Perimetry and the Fundus: An Introduction to Microperimetry. Slack incorporated. Thorofare, NJ, 15–25

    Google Scholar 

  16. Midena E, Vujosevic S, Cavarzeran F, Microperimetry Study Group (2010) Normal values for fundus perimetry with the microperimeter MP1. Ophthalmology 117(8):1571–1576

    Article  PubMed  Google Scholar 

  17. Midena E, Vujosevic S, Convento et al. (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:499–503

    Article  Google Scholar 

  18. Neelam K, Nolan J, Chakravarthy U (2009) Psychophysical function in age-related maculopathy. Surv Ophthalmol 54:167–210

    Article  PubMed  Google Scholar 

  19. Parravano MC, Oddone F, Tedeschi M, et al. (2009) Retinal functional changes measured by microperimetry in neovascular agerelated macular degeneration patients treated with ranibizumab. Retina 29:329–334

    Article  PubMed  Google Scholar 

  20. Parravano MC, Oddone F, Tedeschi M et al. (2009) Retinal functional changes measured by microperimetry in neovascular agerelated macular degeneration patients treated with ranibizumab. Retina 29(3):329–334

    Article  PubMed  Google Scholar 

  21. Pilotto E, Midena E (2007) Scanning Laser Microperimetry. In: Midena E (ed) Perimetry and the Fundus: An Introduction to Microperimetry. Slack Incorporated. Thorofare, NJ, 7–12

    Google Scholar 

  22. Pilotto E, Vujosevic S, Grigic AV et al. (2010) Retinal function in patients with serpiginous choroiditis: a microperimetric study. Graefes Arch Clin Exp Ophthalmol 248:1331–1337

    Article  PubMed  Google Scholar 

  23. Prager F, Michels S, Simader C et al. (2008) Changes in retinal sensitivity in patients with neovascular age-related macular degeneration after systemic bevacizumab (Avastin) therapy. Retina 28:682–688

    Article  PubMed  Google Scholar 

  24. Rohrschneider K, Springer C, Bultmann S et al. (2005) Microperimetry – comparison between the micro perimeter 1 and scanning laser ophthalmoscope – fundus perimetry. Am J Ophthalmol 139:125–134

    Article  PubMed  Google Scholar 

  25. Schmidt-Erfurth UM, Elser H, Terai N et al. (2004) Effects of verteporfin therapy on central visual field function. Ophthalmology 111:931–939

    Article  PubMed  Google Scholar 

  26. Schmitz-Valckenberg S, Bültmann S, Dreyhaupt J et al. (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4470–4476

    Article  PubMed  Google Scholar 

  27. Schmitz-Valckenberg S, Fleckenstein M, Helb et al. (2009) In vivo imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3915–3921

    Article  PubMed  Google Scholar 

  28. Schmitz-Valckenberg S, Fleckenstein M, Scholl HPN et al. (2009) Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol 54:96–117

    Article  PubMed  Google Scholar 

  29. Scholl HP, Bellman C DS, Bird AC et al. (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:574–583

    Article  PubMed  Google Scholar 

  30. Schuman SG, Koreishi AF, Farsiu S et al. (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with Spectral-Domain optical coherence tomography. Ophthalmology 116:488–496

    Article  PubMed  Google Scholar 

  31. Scilley K, Jackson GR, Cideciyan AV et al. (2002) Early age-related maculopathy and self-reported visual difficulty in daily life. Ophthalmology 109:1235–1242

    Article  PubMed  Google Scholar 

  32. Shiraga F (2007) Neovascular age-related macular degeneration: medical treatment. In: Midena E, editor. Perimetry and the Fundus: An Introduction to Microperimetry. Slack incorporated. Thorofare, NJ, 7–12

    Google Scholar 

  33. Squirrel DM, Mawer NP, Mody Ch et al. 2010 () Visual outcome after intravitreal ranibizumab for wet age-related macular degeneration. A comparison between best-corrected visual acuity and microperimetry. Retina 30:436–442

    Article  Google Scholar 

  34. Sunness JS, Applegate CA (2005) Long-term follow-up of fixations patterns in eyes with central scotoma from geographic atrophy associated with age-related macular degeneration. Am J Ophthalmol 140:1085–1093

    Article  PubMed  Google Scholar 

  35. Sunness JS, Margalit E, Srikurnaran D, et al. (2007) The long-term natural history of geographic atrophy from age-related macular degeneration. Ophthalmology 114:271–277

    Article  PubMed  Google Scholar 

  36. Vujosevic S, Midena E, Pilotto E et al. (2006) Diabetic macular edema: correlation between microperimetry and Optical Coherence Tomography findings. Invest Ophthalmol Vis Sci 47:3044–3051

    Article  PubMed  Google Scholar 

  37. Weingessel B, Sacu S, Vecsei-Marlovits PV et al. (2009) Interexaminer and intraexaminer reliability of the microperimeter MP-1. Eye 23:1052–1058

    Article  PubMed  CAS  Google Scholar 

  38. Pilotto E, Vujosevic S, Melis R, et al. (2010) Short wavelength fundus autofluorescence versus near-infrared fundus autofluorescence, with microperimetric correspondence, in patients with geographic atrophy due to age-related macular degeneration. Br J Ophthalmol [Epub ahead of print]

    Google Scholar 

  39. Bellmann C, Feely M, Crossland MD, Kabanarou SA, Rubin GS (2004) Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. Ophthalmology 111: 2265–70

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Midena, E., Pilotto, E. (2011). Mikroperimetrie. In: Altersabhängige Makuladegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20870-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20870-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20869-0

  • Online ISBN: 978-3-642-20870-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics