Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1899 Accesses

Summary

The definition of the differential resultant of a set of ordinary differential polynomials is reviewed and its computation via determinants is revisited, using a modern language. This computation is also extended to differential homogeneous resultants of homogeneous ordinary differential polynomials. A numeric example is included and an example of the application of elimination theory to biological modelling is revisited, in terms of differential resultants.

To our beloved Marisa with great admiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audoly, S., Bellu, G., D’Angio, L., Saccomani, M.P., Cobelli, C.: Global Identifiability of Nonlinear Models of Biological Systems. IEEE Trans. Biomed. Engin. 48, 55–65 (2001)

    Article  Google Scholar 

  2. Berkovich, L.M., Tsirulik, V.G.: Differential resultants and some of their applications. Differ. Equat. 22, 750–757 (1986)

    MathSciNet  Google Scholar 

  3. Boulier, F.: Étude et implantation de quelques algorithmes en algèbre différentielle. PhD Thesis, Université Lille I, 59655, Villeneuve d’Ascq, France (1994)

    Google Scholar 

  4. Boulier, F.: Differential elimination and biological modelling. Radon Series Comp. Appl. Math. 2, 111–139 (2007), http://hal.archives-ouvertes.fr/hal-00139364

    MathSciNet  Google Scholar 

  5. Boulier, F., Lemaire, F., Sedoglavic, A., Ürgüplü, A.: Towards an automated reduction method for polynomial ODE models in cellular biology. Math. Comp. Sci. Special Issue on Symbolic Computation in Biology 2(3), 443–464 (2009)

    MATH  Google Scholar 

  6. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model Reduction of Chemical Reaction Systems using Elimination. Presented at the International Conference MACIS (2007), http://hal.archives-ouvertes.fr/hal-00184558

  7. Carra’Ferro, G.: A resultant theory of systems of linear partial differential equations. Proc. Modern Group Anal. 1, 47–55 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Carra’Ferro, G.: A resultant theory for systems of two ordinary algebraic differential equations. Appl. Alg. Engin. Commun. Comp. 8, 539–560 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carra’Ferro, G.: A resultant theory for ordinary algebraic differential equations. In: Mattson, H.F., Mora, T. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 55–65. Springer, Heidelberg (1997)

    Google Scholar 

  10. Chardin, M.: Differential resultants and subresultants. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 180–189. Springer, Heidelberg (1991)

    Google Scholar 

  11. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  12. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algor. 34, 282–292 (2003)

    Article  MathSciNet  Google Scholar 

  13. Diop, S.: Elimination in Control Theory. Math. Contr. Sign. Syst. 4, 17–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diop, S.: Differential algebraic decision methods and some application to system theory. Theor. Comp. Sci. 98, 137–161 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Diop, S., Michel, F.: Nonlinear observability, identifiability, and persistent trajectories. In: Proc. 30th CDC, Brighton, pp. 714–719 (1991)

    Google Scholar 

  16. Gao X S, Li W, Yuan C M (2010) Intersection theory for generic differential polynomials and differential Chow form. arXiv:1009.0148v1

    Google Scholar 

  17. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  18. Gonzalez-Vega, L.: Une théorie des sous-résultants pour les polynômes en plusieurs variables. CR Acad. Sci. Paris Ser. I 313, 905–908 (1991)

    MATH  MathSciNet  Google Scholar 

  19. Kasman, A., Previato, E.: Commutative partial differential operators. Physica D 152-153, 66–77 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, London (1973)

    MATH  Google Scholar 

  21. Li, Z.: A subresultant theory for linear ordinary differential polynomials. RISC-Linz Techn. Report Series No. 95–35 (1995)

    Google Scholar 

  22. Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Proc. Camb. Univ. Press, Cambridge (1916)

    MATH  Google Scholar 

  24. Minimair, M.: MR: Macaulay Resultant Package for Maple (2005), http://www.minimair.org/mr

  25. Ollivier, F.: Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. PhD Thesis, École Polytechnique, Palaiseau, France (1990)

    Google Scholar 

  26. Ore, O.: Formale theorie der linearen differentialgleichungen. J. Reine. Angew. Math. 167, 221–234 (1932)

    Article  MATH  Google Scholar 

  27. Ritt, J.F.: Differential Equations from the Algebraic Standpoint. Amer. Math. Soc., New York (1932)

    Google Scholar 

  28. Ritt, J.F.: Differential Algebra. Amer. Math. Soc. Colloquium (1950)

    Google Scholar 

  29. Rueda, S.L.: DiffRes: Differential Resultant Package for Maple (2008), http://www.aq.upm.es/Departamentos/Matematicas/srueda/srueda_archi-vos/DiffRes/DiffRes.htm

  30. Rueda, S.L., Sendra, J.R.: Linear complete differential resultants and the implicitization of linear DPPEs. J. Symbol Comput. 45, 324–341 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. van der Waerden, B.L.: Algebra, vol. 1. Springer, Heidelberg (2003)

    Google Scholar 

  32. van der Waerden, B.L.: Algebra, vol. II. Springer, Heidelberg (2003)

    Google Scholar 

  33. Walter, E.: Identifiability of State Space Models. Lect. Notes Biomath., vol. 46. Springer, Heidelberg (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rueda, S.L. (2011). On the Computation of Differential Resultants. In: Pardo, L., Balakrishnan, N., Gil, M.Á. (eds) Modern Mathematical Tools and Techniques in Capturing Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20853-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20853-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20852-2

  • Online ISBN: 978-3-642-20853-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics