Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1867 Accesses

Summary

For the bundle of linear frames LM of a manifold M, diffeomorphism invariance on the vertically adapted linear frame bundle L π (LM) and its infinitesimal counterpart, invariance under the natural representation of vector fields of M, are analyzed. Furthermore, the structure of the vector-field-invariant Lagrangians on L π (LM) is determined.

Dedicated in honour of Professor Marisa Menéndez.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baez, J.C.: Diffeomorphism-invariant generalized measures on the space of connections modulo gauge transformations. In: Proc. of the Conference on Quantum Topology, Manhattan, KS 1993, pp. 21–43. World Sci. Pub., River Edge (1994)

    Google Scholar 

  2. Bleecker, D.: Gauge Theory and Variational Principles. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  3. Fulp, R.O., Lawson, J.K., Norris, L.K.: Generalized symplectic geometry as a covering theory for the Hamiltonian theories of classical particles and fields. J.Geom. Phys. 20, 195–206 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gotay, M.: A multisymplectic framework for classical field theory and the calculus of variations. II. Space + time decomposition. In: Francaviglia, M. (ed.) Mechanics, Analysis and Geometry: 200 Years after Lagrange, pp. 203–235. North Holland, Amsterdam (1991)

    Google Scholar 

  5. Gotay, M.J., Isenberg, J.A., Marsden, J.E.: Momentum maps and classical fields, I: Covariant field theory. arXiv.org preprint Physics/9801019 (1997)

    Google Scholar 

  6. Gronwald, F.: Metric-affine gauge theory of gravity. I. Fundamental structure and field equations. Int. J. Mod. Phys. D 6, 263–303 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  8. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963)

    MATH  Google Scholar 

  9. Lawson, J.K.: A frame bundle generalization of multisymplectic geometries. Rep. Math. Phys. 45, 183–205 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lawson, J.K.: A frame bundle generalization of multisymplectic momentum mappings. Rep. Math. Phys. 53, 19–37 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. de León, M., McLean, M., Norris, L.K., Rey-Roca, A.C., Salgado, M.: Geometric structures in field theory. arXiv.org preprint math-ph/0208036 (2002)

    Google Scholar 

  12. Luo, Y., Shao, M.X., Zhu, Z.Y.: Diffeomorphism invariance of geometric descriptions of Palatini and Ashtekar gravity. Phys. Lett. B 419, 37–39 (1998)

    Article  MathSciNet  Google Scholar 

  13. McLean, M., Norris, L.K.: Covariant field theory on frame bundles of fibered manifolds. J. Math. Phys. 41, 6808–6823 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Muñoz Masqué, J., Rosado, M.E.: Invariant variational problems on linear frame bundles. J. Phys. A 35, 2013–2036 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Norris, L.K.: Generalized symplectic geometry on the frame bundle of a manifold. In: Proc. Symp. Pure Math., vol. 54(2), pp. 435–465 (1993)

    Google Scholar 

  16. Norris, L.K.: n-symplectic algebra of observables in covariant Lagrangian field theory. J. Math. Phys. 42, 4827–4845 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Piguet, O.: Ghost equations and diffeomorphism-invariant theories. Class Quantum Grav. 17, 3799–3806 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saunders, D.J.: The Geometry of Jet Bundles. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  19. Sławianowski, J.J.: Field of linear frames as a fundamental self-interacting system. Rep. Math. Phys. 22, 323–371 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sławianowski, J.J.: GL(n,R) as a candidate for fundamental fymmetry in Field Theory. Nuovo. Cimento. B 11(106), 645–668 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lawson, J.K., Rosado-María, M.E. (2011). Invariant Lagrangians on the Vertically Adapted Linear Frame Bundle. In: Pardo, L., Balakrishnan, N., Gil, M.Á. (eds) Modern Mathematical Tools and Techniques in Capturing Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20853-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20853-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20852-2

  • Online ISBN: 978-3-642-20853-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics