Skip to main content

Hopf Bifurcation and Bifurcation from Constant Oscillations to a Torus Path for Delayed Complex Ginzburg-Landau Equations

  • Chapter
Modern Mathematical Tools and Techniques in Capturing Complexity

Part of the book series: Understanding Complex Systems ((UCS))

  • 1892 Accesses

Summary

We consider the complex Ginzburg-Landau equation with feedback control given by some delayed linear terms (possibly dependent on the past spatial average of the solution). We prove several bifurcation results by using the delay as parameter. We start proving a Hopf bifurcation result for the equation without diffusion (the so-called Stuart-Landau equation) when the amplitude of the delayed term is suitably chosen. The diffusion case is considered first in the case of the whole space and later on a bounded domain with periodicity conditions. In the first case a linear stability analysis is made with the help of computational arguments (showing evidence of the fulfillment of the delicate transversality condition). In the last section the bifurcation takes place starting from an uniform oscillation and originates a path over a torus. This is obtained by the application of an abstract result over suitable functional spaces.

To the memory of Maria Luisa Menéndez: excellent mathematician, admirable colleague and great person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, H.: Dynamic theory of quasilinear parabolic equations: II. reaction-diffusion systems. Diff. Int. Equ. 3, 13–75 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Atay, F.M. (ed.): Complex Time-Delay Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Benilan, P., Crandall, M.G., Pazy, A.: Nonlinear Evolution Equations in Banach Spaces. Book in preparation

    Google Scholar 

  6. Casal, A.C., Díaz, J.I.: On the complex Ginzburg-Landau equation with a delayed feedback. Math. Mod. Meth. App. Sci. 16, 1–17 (2006)

    Article  MATH  Google Scholar 

  7. Casal, A.C., Díaz, J.I., Stich, M.: On some delayed nonlinear parabolic equations modeling CO oxidation. Dyn. Contin. Discret. Impuls Syst. A 13(supp. S), 413–426 (2006)

    Google Scholar 

  8. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  9. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  10. Ipsen, M., Kramer, L., Sørensen, P.G.: Amplitude equations for description of chemical reaction-diffusion systems. Phys. Rep. 337, 193–235 (2000)

    Article  MATH  Google Scholar 

  11. Kim, M., Bertram, M., Pollmann, M., von Oertzen, A., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation reaction on Pt(110). Science 292, 1357–1360 (2001)

    Article  Google Scholar 

  12. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  13. Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  14. Pyragas, K.: Continuous control of chaos by self–controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  15. Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  16. Stich, M., Beta, C.: Control of pattern formation by time-delay feedback with global and local contributions. Physica D 239, 1681–1691 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stich, M., Casal, A.C., Díaz, J.I.: Control of turbulence in oscillatory reaction-diffusion systems through a combination of global and local feedback. Phys. Rev. E 76, 036209, 1–9 (2007)

    Article  Google Scholar 

  18. Takáč, P.: Invariant 2-tori in the time-dependent Ginzburg-Landau equation. Nonlinearity 5, 289–321 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    MATH  Google Scholar 

  20. Vrabie, II: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, 2nd edn. Longman, Harlow (1995)

    Google Scholar 

  21. Wolfram Research, Inc.: Mathematica edition 5.2, Wolfram Research, Inc. Champaign (2005)

    Google Scholar 

  22. Wu, J.: Theory and Applications of Partial Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casal, A., Díaz, J.I., Stich, M., Vegas, J.M. (2011). Hopf Bifurcation and Bifurcation from Constant Oscillations to a Torus Path for Delayed Complex Ginzburg-Landau Equations. In: Pardo, L., Balakrishnan, N., Gil, M.Á. (eds) Modern Mathematical Tools and Techniques in Capturing Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20853-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20853-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20852-2

  • Online ISBN: 978-3-642-20853-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics