Skip to main content

A Finite Volume Scheme for Simulating the Coupling between Deep Ocean and an Atmospheric Energy Balance Model

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

Summary

In this work we consider a model including the coupling surface/deep ocean first proposed in [20]. It is a diagnostic model which can be used to understand the long-term climate evolution. The unknown is the temperature over each parallel and the effect of the deep ocean on the Earth surface temperature is considered. One of the difficulties of this problem is the dynamic and diffusive boundary condition. The purpose of this work is to approximate the solutions by a finite volume scheme. We also compare the solution of the studied model with the solution of an energy balance model without deep ocean effect.

This work is dedicated to our colleague and friend María Luisa Menéndez.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Phys. 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bermejo, R., Carpio, J., Díaz, J.I., Tello, L.: Mathematical and Numerical Analysis of a Nonlinear Diffusive Climate Energy Balance Model. Math. Comp. Model 49, 1180–1210 (2009)

    Article  MATH  Google Scholar 

  3. Budyko, M.I.: The effects of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)

    Article  Google Scholar 

  4. Casper, J., Atkins, H.: A finite-volume high order ENO scheme for two-dimensional hyperbolic systems. J. Comp. Phys. 106, 62–76 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Díaz, J.I. (ed.): The Mathematics of Models in Climatology and Environment. ASI NATO Global Change Series I, vol. 48. Springer, Heidelberg (1996)

    Google Scholar 

  6. Díaz, J.I., Hetzer, G., Tello, L.: An energy balance climate model with hysteresis. Nonlin Anal. 64, 2053–2074 (2006)

    Article  MATH  Google Scholar 

  7. Díaz, J.I., Tello, L.: Sobre un modelo climático de balance de energía superficial acoplado con un océano profundo. Actas XVII CEDYA/ VI CMA. Univ. Salamanca (2001)

    Google Scholar 

  8. Díaz, J.I., Tello, L.: A 2D climate energy balance model coupled with a 3D deep ocean model. Elect. J. Differ. Equat. Conf. 16, 129–135 (2007)

    Google Scholar 

  9. Díaz, J.I., Tello, L.: On a climate model with a dynamic nonlinear diffusivity boundary condition. Discr. Contin. Dynam. Syst. Ser. S 1(2), 253–262 (2008)

    Article  MATH  Google Scholar 

  10. Díaz, J.I., Hetzer, G., Tello, L.: An energy balance climate model with hysteresis. Nonlinear analysis, Series S 1(2), 2053–2074 (2006)

    Article  Google Scholar 

  11. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comp. Phys. 228(5), 1573–1590 (2009)

    Article  Google Scholar 

  12. Hetzer, G.: The structure of the principal component for semilinear diffusion equations from energy balance climate models. Houston Journal of Math. 16, 203–216 (1990)

    MATH  MathSciNet  Google Scholar 

  13. North, G.R.: Multiple solutions in energy balance climate models. Paleogeography, Paleoclimatology, Paleoecology 82, 225–235 (1990)

    Google Scholar 

  14. Sellers, W.D.: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol 8, 392–400 (1969)

    Article  Google Scholar 

  15. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  16. Stone, P.H.: A simplified radiative - dynamical model for the static stability of rotating atmospheres. Journal of the Atmospheric Sciences 29(3), 405–418 (1972)

    Article  Google Scholar 

  17. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comp. Phys. 201, 238–260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comp. Phys. 204(2), 715–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Toro, E.F., Hidalgo, A.: ADER finite volume schemes for nonlinear reaction–diffusion equations. Appl. Num. Math. 59(1), 73–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Watts, R.G., Morantine, M.: Rapid climatic change and the deep ocean. Climate Change 16, 83–97 (1990)

    Article  Google Scholar 

  21. Xu, X.: Existence and regularity theorems for a free boundary problem governing a simple climate model. Applicable Anal. 42, 33–59 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hidalgo, A., Tello, L. (2011). A Finite Volume Scheme for Simulating the Coupling between Deep Ocean and an Atmospheric Energy Balance Model. In: Pardo, L., Balakrishnan, N., Gil, M.Á. (eds) Modern Mathematical Tools and Techniques in Capturing Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20853-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20853-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20852-2

  • Online ISBN: 978-3-642-20853-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics