Skip to main content

An IFS-Based Similarity Measure to Index Electroencephalograms

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

EEG is a very useful neurological diagnosis tool, inasmuch as the EEG exam is easy to perform and relatively cheap. However, it generates large amounts of data, not easily interpreted by a clinician. Several methods have been tried to automate the interpretation of EEG recordings. However, their results are hard to compare since they are tested on different datasets. This means a benchmark database of EEG data is required. However, for such a database to be useful, we have to solve the problem of retrieving information from the stored EEGs without having to tag each and every EEG sequence stored in the database (which can be a very time-consuming and error-prone process). In this paper, we present a similarity measure, based on iterated function systems, to index EEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics 77(5), 339–350 (1997)

    Article  MATH  Google Scholar 

  2. Barbará, D., Chen, P.: Using the fractal dimension to cluster datasets. In: KDD, pp. 260–264 (2000)

    Google Scholar 

  3. Barnsley, M.: Fractals everywhere. Academic Press Professional, Inc., San Diego (1988)

    MATH  Google Scholar 

  4. Climescu-Haulica, A.: How to Choose the Number of Clusters: The Cramer Multiplicity Solution. In: Decker, R., Lenz, H.J. (eds.) Advances in Data Analysis, Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin, March 8-10. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 15–22. Springer, Heidelberg (2006)

    Google Scholar 

  5. De Hoon, M., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software. Bioinformatics 20, 1453–1454 (2004), http://portal.acm.org/citation.cfm?id=1092875.1092876

    Article  Google Scholar 

  6. Eke, A., Herman, P., Kocsis, L., Kozak, L.: Fractal characterization of complexity in temporal physiological signals. Physiological measurement 23(1), R–R38 (2002)

    Article  Google Scholar 

  7. Goh, C., Hamadicharef, B., Henderson, G.T., Ifeachor, E.C.: Comparison of Fractal Dimension Algorithms for the Computation of EEG Biomarkers for Dementia. In: Proceedings of the 2nd International Conference on Computational Intelligence in Medicine and Healthcare (CIMED 2005), Costa da Caparica, Lisbon, Portugal, June 29-July 1 (2005)

    Google Scholar 

  8. Hao, L., Ghodadra, R., Thakor, N.V.: Quantification of Brain Injury by EEG Cepstral Distance during Transient Global Ischemia. In: Proceedings - 19th International Conference - IEEE/EMBS, Chicago, IL., USA, October 30-November 2 (1997)

    Google Scholar 

  9. Kalpakis, K., Gada, D., Puttagunta, V.: Distance Measures for Effective Clustering of ARIMA Time-Series. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 273–280. IEEE Computer Society, Washington, DC (2001)

    Chapter  Google Scholar 

  10. Lin, G., Chen, L.: A Grid and Fractal Dimension-Based Data Stream Clustering Algorithm. In: International Symposium on Information Science and Engieering, vol. 1, pp. 66–70 (2008)

    Google Scholar 

  11. Mazel, D.S., Hayes, M.H.: Fractal modeling of time-series data. In: Conference Record of the Twenty-Third Asilomar Conference of Signals, Systems and Computers, pp. 182–186 (1989)

    Google Scholar 

  12. Malcok, M., Aslandogan, Y.A., Yesildirek, A.: Fractal dimension and similarity search in high-dimensional spatial databases. In: IRI, pp. 380–384 (2006)

    Google Scholar 

  13. Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Let. Signal Proc. 2008, 1–5 (2008)

    Article  Google Scholar 

  14. Sarkar, M., Leong, T.Y.: Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artificial Intelligence in Medicine 27(2), 201–222 (2003)

    Article  Google Scholar 

  15. Yan, G., Li, Z.: Using cluster similarity to detect natural cluster hierarchies. In: FSKD (2), pp. 291–295 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berrada, G., de Keijzer, A. (2011). An IFS-Based Similarity Measure to Index Electroencephalograms. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics