Skip to main content

Multi-agent Based Classification Using Argumentation from Experience

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

An approach to multi-agent classification, using an Argumentation from Experience paradigm is describe, whereby individual agents argue for a given example to be classified with a particular label according to their local data. Arguments are expressed in the form of classification rules which are generated dynamically. The advocated argumentation process has been implemented in the PISA multi-agent framework, which is also described. Experiments indicate that the operation of PISA is comparable with other classification approaches and that it can be utilised for Ordinal Classification and Imbalanced Class problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alejo, R., Garcia, V., Sotoca, J., Mollineda, R., Sanchez, J.: Improving the Performance of the RBF Neural Networks with Imbalanced Samples. In: Proc. 9th Intl. Conf. on Artl. Neural Networks, pp. 162–169. Springer, Heidelberg (2007)

    Google Scholar 

  2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, Boosting and variants. J. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  3. Brieman, L.: Bagging predictors. J. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Cao, L., Gorodetsky, V., Mitkas, P.: Agent Mining: The Synergy of Agents and Data Mining. IEEE Intelligent Systems 24(3), 64–72 (2009)

    Article  Google Scholar 

  6. Coenen, F., Leng, P., Ahmed, S.: Data structure for association rule mining: T-trees and p-trees. J. IEEE Trans. Knowl. Data Eng. 16(6), 774–778 (2004)

    Article  Google Scholar 

  7. Coenen, F., Leng, P.: Obtaining Best Parameter Values for Accurate Classification. In: Proc. ICDM 2005, pp. 597–600. IEEE, Los Alamitos (2005)

    Google Scholar 

  8. Coenen, F.: The LUCS-KDD Decision Tree Classifier Software Dept. of Computer Science, The University of Liverpool, UK (2007), http://www.csc.liv.ac.uk/~frans/KDD/Software/DecisionTrees/decisionTree.html

  9. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. IJCAI 2001, vol. 2, pp. 973–978 (2001)

    Google Scholar 

  11. Gaudette, L., Japkowicz, N.: Evaluation Methods for Ordinal Classification. In: Yong, G., Japkowicz, N. (eds.) AI 2009. LNCS, vol. 5549, pp. 207–210. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Guo, X., Yin, Y., Dong, C., Zhou, G.: On the Class Imbalance Problem. In: Proc. ICNC 2008, pp. 192–201. IEEE, Los Alamitos (2008)

    Google Scholar 

  13. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–157. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. ICML 1996, pp. 148–156 (1996)

    Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. J. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  16. Han, J., Pei, J., Yiwen, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proc. SIGMOD 2000, pp. 1–12. ACM Press, New York (2000)

    Google Scholar 

  17. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A systematic study. J. Intelligent Data Analysis 6(5), 429–449 (2002)

    MATH  Google Scholar 

  18. Kotsiantis, S., Pintelas, P.: Mixture of Expert Agents for Handling Imbalanced Data Sets. Annals of Mathematics, Computing & TeleInformatics 1, 46–55 (2003)

    Google Scholar 

  19. Melville, P., Mooney, R.: Constructing Diverse Classifier Ensembles Using Artificial Training Examples. In: Proc. IJCAI 2003, pp. 505–510 (2003)

    Google Scholar 

  20. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. J. Artif. Intell. Research 11, 169–198 (1999)

    MATH  Google Scholar 

  21. Philippe, L., Lallich, S., Do, T., Pham, N.: A comparison of different off-centered entropies to deal with class imbalance for decision trees. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 634–643. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Blaszczynski, J., Slowinski, R., Szelag, M.: Probabilistic Rough Set Approaches to Ordinal Classification with Monotonicity Constraints. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 99–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Wardeh, M., Bench-Capon, T., Coenen, F.: Multi-Party Argument from Experience. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS, vol. 6057, Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Wardeh, M., Bench-Capon, T., Coenen, F.: Arguments from Experience: The PADUA Protocol. In: Proc. COMMA 2008, Toulouse, France, pp. 405–416. IOS Press, Amsterdam (2008)

    Google Scholar 

  25. Wardeh, M., Bench-Capon, T., Coenen, F.: Dynamic Rule Mining for Argumentation Based Systems. In: Proc. 27th SGAI Intl. Conf. on AI (AI 2007), pp. 65–78. Springer, London (2007)

    Google Scholar 

  26. Webb, G.: MultiBoosting: A Technique for Combining Boosting and Wagging. J. Machine Learning 40(2), 159–196 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wardeh, M., Coenen, F., Bench-Capon, T., Wyner, A. (2011). Multi-agent Based Classification Using Argumentation from Experience. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics