Skip to main content

Genetic Engineering of Probiotic Microorganisms

  • Chapter
  • First Online:
Probiotics

Part of the book series: Microbiology Monographs ((MICROMONO,volume 21))

  • 3258 Accesses

Abstract

With the advent of the era of genomics and proteomics, the molecular mechanisms of beneficial characteristics of probiotics are gradually being elucidated. These studies while paving the way for concrete evidence of the beneficial effects of probiotics have also lead to the idea of improved probiotics through genetic modification. Genetically Modified (GM) probiotics are mainly concerned with the improved survival and persistence of probiotics within the human and animal gut, tolerance of packing and storage conditions of food and the delivery of therapeutics by live probiotics. With the identification of genetic elements that confer tolerance to increased osmolarity, bile salt and reduced water activity, the improvement of probiotics for survival has become a reality. With the expression of various molecules such as antigens, enzymes, and molecules of immunological importance within probiotic microbes, the use of GM probiotics in the field of therapeutics looks promising. However, the safety issues of GM probiotics and the consumer perceptions need to be addressed properly in order to reap their full benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altermann E, Buck BL, Cano R, Klaenhammer TR (2004) Identification and phenotypic characterization of the cell division protein CdpA. Gene 342:189–197

    Article  PubMed  CAS  Google Scholar 

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912

    Article  PubMed  CAS  Google Scholar 

  • Ascarte-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR (2004) Identification and Inactivation of Genetic Loci Involved withLactobacillus acidophilus Acid Tolerance Appl Environ Microbiol 70(9):5315–5322

    Google Scholar 

  • Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci USA 100:8957–8962

    Article  PubMed  CAS  Google Scholar 

  • Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Bermúdez-Humarán LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P (2004) An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53:427–33

    Article  PubMed  Google Scholar 

  • Birri DJ, Brede DA, Forberg T, Holo H, Nes IF (2010) Molecular and genetic characterization of a novel Bacteriocin Locusin Enterococcus avium isolates from infants. Appl Environ Microbiol 76:483–492

    Article  PubMed  CAS  Google Scholar 

  • Boekhorst J, Siezen RJ, Zwahlen M-C, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, de Vos WM, Brüssow H, Desiere F (2004) The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150:3601–3611

    Article  PubMed  CAS  Google Scholar 

  • Boyd MR, Gustafson KR, Mcmahon JB, Shoemaker RH, O’keefe BR, Mori K, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH, Buckheit RW Jr, Nara PL, Panell LK, Sowder RC, Henderson LE (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530

    PubMed  CAS  Google Scholar 

  • Bron PA, Hoffer SM, Van Swam II, De Vos WM, Kleerebezem M (2004) Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 70(1):310–317

    Article  PubMed  CAS  Google Scholar 

  • Bron PA, Molenaar D, Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain LM, Wells JM, Robinson K, Schofield KM, Le Page RWF (1997) Mucosal immunisation with recombinant Lactococcus lactis. In: Pozzi G, Wells JM (eds) Gram-positive bacteria as vaccine vehicles for mucosal immunisation. Biotechnology Intelligence Unit. Landes, Austin, USA, pp 83–106

    Google Scholar 

  • Cortes-Perez NG, Lefevre F, Corthier G, Adel-Patient K, Langella P, Bermudez-Humaran LG (2007) Influence of the route of immunization and the nature of the bacterial vector on immunogenecity of mucosal vaccines based on lactic acid bacteria. Vaccine 25:6581–6588

    Article  PubMed  CAS  Google Scholar 

  • Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brussow H (2008) Identification of genes associated with the long gut persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190:3161–3168

    Article  PubMed  CAS  Google Scholar 

  • Drouault S, Juste C, Marteau P, Renault P, Corthier G (2002) Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Appl Environ Microbiol 68:3166–3168

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich K, Plate S, Stroff T, Gretzer B, Respondek M, Peskar BM (1998) Peptidergic and cholinergic neurons and mediators in peptone-induced gastroprotection: role of cyclooxygenase-2. AJP Gastrointest Liver Physiol 274:G955–G964

    CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  PubMed  CAS  Google Scholar 

  • Flynn S, van Sindere D, Thornton GM, Holo H, Nes IF, Collins K (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148:973–984

    PubMed  CAS  Google Scholar 

  • Gahan CG, Hill C (2005) Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 98:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Robinson K, Le Page RW, Wells JM (2000) Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect Immun 68:3251–3260

    Article  PubMed  CAS  Google Scholar 

  • Giomarelli B, Provvedi R, Meacci F, Maggi T, Medaglini D, Pozzi G, Mori T, McMahon JB, Gardella R, Boyd MR (2002) The microbicide cyanovirin-N expressed on the surface of commensal bacterium Streptococcus gordonii captures HIV-1. Aids 16:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Glaasker E, Heuberger EHML, Konings WN, Poolman B (1998) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J Bacteriol 180:5540–5546

    PubMed  CAS  Google Scholar 

  • Grangette C, Grangette C, Müller-Alouf H, Hols P, Goudercourt D, Delcour J, Turneer M, Mercenier A (2004) Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun 72:2731–2737

    Article  PubMed  CAS  Google Scholar 

  • Grill JPC, Cayuela J, Antoine M, Schneider F (2000) Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. J Appl Microbiol 89:553–563

    Article  PubMed  CAS  Google Scholar 

  • Guimarães VD, Gabriel JE, Lefèvre F, Cabanes D, Gruss A, Cossart P, Azevedo V, Langella P (2005) Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect 7:836–844

    Article  PubMed  Google Scholar 

  • Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J (2004) Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 56:1–64

    Article  PubMed  Google Scholar 

  • Hanniffy SB, Carter AT, Hitchin E, Wells JM (2007) Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195:185–193

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Francis KP, De Boer M, Chu P, Gibbs K, Contag CH (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29

    PubMed  CAS  Google Scholar 

  • Hvalbye BK, Aaberge IS, Lovik M, Haneberg B (1999) Intranasal immunization with heat-inactivated Streptococcus pneumoniae protects mice against systemic pneumococcal infection. Infect Immun 67:4320–4325

    PubMed  CAS  Google Scholar 

  • Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 63:82–87

    Google Scholar 

  • Kim GBS, Yi H, Lee BH (2004) Purification and characterization of three different types of bile salt hydrolase from Bifidobacterium strains. J Dairy Sci 87:258–266

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584

    PubMed  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarumWCFS1. Proc Natl Acad Sci USA 100:1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Klijn A, Mercenier A, Arigoni F (2005) Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29:491–509

    Article  PubMed  CAS  Google Scholar 

  • Li YG, Tian FL, Gao FS, Tang XS, Xia C (2007) Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot and mouth disease virus. Vaccine 25:902–911

    Article  PubMed  CAS  Google Scholar 

  • Lundeen SG, Savage DC (1992) Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100-100. J Bacteriol 174:7217–7220

    PubMed  CAS  Google Scholar 

  • Mc Auliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929

    Article  CAS  Google Scholar 

  • Molenaar D, Boingel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobaccilus plantarum genomic diversity by using microarrays. J Bacteriol 187:6119–6127

    Article  PubMed  CAS  Google Scholar 

  • Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hasamatau S, Kato Y, Takizawa T, Fukuoka H, Yashimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kibuchi J, Masaoka T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161

    Article  PubMed  CAS  Google Scholar 

  • Moser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67:3476–3480

    Article  PubMed  CAS  Google Scholar 

  • NCBI n.d. http://www.ncbi.nlm.nih.gov, accessed on October 10, 2010

  • Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY (1999) Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 181:6238–6246

    PubMed  CAS  Google Scholar 

  • Oliveira ML, Areas AP, Campos IB, Monedero V, Perez-Martinez G, Miyaji EN, Leite LC, Aires KA, Lee Ho P (2006) Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect 8:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two component regulatory system in Lactobacillus acidophilus. J bacteriol 189:4624–4634

    Article  PubMed  CAS  Google Scholar 

  • Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Morace G (1987) Production and characterization of yeast killer toxin monoclonal antibodies. J Clin Microbiol 25(2):460–462

    PubMed  CAS  Google Scholar 

  • Pouwels PH, Leer RJ, Shaw M, den Bak-Glashouwer MJH, Tielen SFDE, Martinez B, Jore J, Conway PL (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int J Food Microbiol 41:155–167

    Article  PubMed  CAS  Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K (2006) Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 24:3900–3908

    Article  PubMed  CAS  Google Scholar 

  • Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RWF (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15:653–657

    Article  PubMed  CAS  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Anglade P, Baraige F, de los Reyes-Gavilán CG, Margolles A, Zagores M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808

    Article  PubMed  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Article  PubMed  CAS  Google Scholar 

  • Schotte L, Steidler L, Vandekerckhove J, Remaut E (2000) Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme Microb Technol 27(10):761–765

    Article  PubMed  CAS  Google Scholar 

  • Sheehan VM, Sleater RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72(3):2170–2177

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  Google Scholar 

  • Sleator RD, Hill C (2005) A novel role for the LisRK two component regulatory system in listerial osmotolerance. Clin Microbiol Infect 11:599–601

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Hill C (2006) Patho-biotechnology; using bad bugs to do good things. Curr Opin Biotechnol 17:211–226

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Hill C (2008) New frontiers in probiotic research. Lett Appl Microbiol 46:143–147

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Gahan CGM, O’Driscoll B, Hill C (2000) Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int J Food Microbiol 60:261–268

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Gahan CGM, Hill C (2003a) A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 69:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Wood JM, Hill C (2003b) Transcriptional regulation and posttranslational activity of the betaine transporter BetL in Listeria monocytogenes are controlled by environmental salinity. J Bacteriol 185:7140–7144

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD, Wemekamp-Kamphuis HH, Gahan CGM, Hill C, Abee T (2005) A PrfA-regulated bile exclusion system is a novel virulence factor in Listeria monocytogenes. Mol Microbiol 55:1183–1195

    Article  PubMed  CAS  Google Scholar 

  • Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66(7):3183–3189

    PubMed  CAS  Google Scholar 

  • Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Sybesma W, Hugenholtz J, de Vos WM, Smid EJ (2006) Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electronic J Biotechnol 9:4. doi:10.2225/vol9-issue4-fulltext-12

    Google Scholar 

  • Tacket CO, Levine MM (2007) CVD 908, CVD 908- htrA, and CVD 909 live oral typhoid vaccines: a logical progression. Clin Infect Dis 45:S20–S23

    Article  PubMed  CAS  Google Scholar 

  • Takala T, Saris P, Tynkkynen S (2003) Foodgrade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phosphobeta- galactosidase gene lacG. Appl Microbiol Biotech 60(5):564–570

    CAS  Google Scholar 

  • Taranto MP, Fernandez Murga ML, Lorca G, Font de Valdez G (2003) Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J Appl Microbiol 95:86–91

    Article  PubMed  CAS  Google Scholar 

  • Taupin D, Podolsky DK (2003) Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4:721–732

    Article  PubMed  CAS  Google Scholar 

  • Thim L, Mortz E (2000) Isolation and characterization of putative trefoil peptide receptors. Regul Pept 90:61–68

    Article  PubMed  CAS  Google Scholar 

  • Thompson C, Powrie F (2004) Regulatory T cells. Curr Opin Pharmacol 4:408–414

    Article  PubMed  CAS  Google Scholar 

  • Tilg H, Ulmer H, Kaser A, Weis G (2002) Role of IL 10 for induction of anemia during inflammation. J Immunol 169:2204–2209

    PubMed  CAS  Google Scholar 

  • Toba T, Virkola R, Westerlund B, Björkman Y, SillanpääJ VT, Kalkkinen N, Korhonen TK (1995) A collagen binding S-layer protein in Lactobacillus crispatus. Appl Environ Microbiol 61:2467–2471

    PubMed  CAS  Google Scholar 

  • Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, Sinderen DV, O’Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7:61–71

    Article  PubMed  CAS  Google Scholar 

  • Visser JA, Akkermans GM, Hoekstra RF, De Vos WM (2004) Insertionsequence- mediated mutations isolated during adaptation to growth and starvation in Lactococcus lactis. Genetics 168:1145–1157

    Article  PubMed  Google Scholar 

  • Wall T, Bath M, Britton RA, Jonsson H, Versalovic J, Roos S (2007) The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 73:3924–3935

    Article  PubMed  CAS  Google Scholar 

  • Watsen D, Sleater RD, Hill C, Gahan CG (2008) Enhancing bile tolerance and improved survival and persistence of Bifidobacterium and lactococcus in the murine gastrointestinal tract. BMC Microbiol. doi:10.1186/1471-2180-8-176

    Google Scholar 

  • Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    Article  PubMed  CAS  Google Scholar 

  • Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Zhang JG, Matthews JM, Ward LD, Simpson RJ (1997) Disruption of the disulfide bonds of recombinant murine interleukin-6 induces formation of a partially unfolded state. Biochemistry 36(9):2380–2389

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Bamunuarachchige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bamunuarachchige, T.C., Wickramasinghe, H.A.M., Dissanayaka, D.M.J.C., Wickramarathna, N.A.D. (2011). Genetic Engineering of Probiotic Microorganisms. In: Liong, MT. (eds) Probiotics. Microbiology Monographs, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20838-6_5

Download citation

Publish with us

Policies and ethics