Stimulus Perception and Membrane Excitation in Unicellular Alga Chlamydomonas

  • Kenjiro YoshimuraEmail author
Part of the Signaling and Communication in Plants book series (SIGCOMM)


Chlamydomonas cells display various Ca2+-dependent behavioral responses against environmental stimuli to find a better place for proliferation. The cells show phototaxis to move toward a light condition suitable for photosynthesis and also display photophobic response to avoid excessive light. The flagellar motility during phototaxis and photophobic response is controlled by changes in intraflagellar Ca2+ concentration. Ca2+ influx on photophobic response is brought about by voltage-dependent calcium channel, CAV2. Avoiding reaction, which occurs on collision to obstacles, is triggered by mechanosensitive channel TRP11, a member of transient receptor potential channels, subfamily V. Elimination of the CAV2 localization in the flagellar proximal region prevents untimely activation of Ca2+-dependent flagellar excision machinery at flagellar base. By contrast, false activation TRP11 by the flagellar bending motion is kept to minimum by targeting TRP11 to the proximal region of flagella. A set of Ca2+-dependent processes performed by flagella is coordinated by various ion channels that show specific distribution along the length of flagella.


Transient Receptor Potential Channel Transmembrane Segment TRPV Channel Mechanosensitive Channel Swimming Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bean B (1977) Geotactic behavior of Chlamydomonas. J Protozool 24:394–401PubMedCrossRefGoogle Scholar
  2. Bessen M, Fay RB, Witman GB (1980) Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol 86:446–455PubMedCrossRefGoogle Scholar
  3. Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–889PubMedCrossRefGoogle Scholar
  4. Foster KW, Smyth RD (1980) Light antennas of phototactic algae. Microbiol Rev 44:572–630PubMedCentralPubMedGoogle Scholar
  5. Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759PubMedCrossRefGoogle Scholar
  6. Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K (2009) Chlamydomonas CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr Biol 19:133–139PubMedCrossRefGoogle Scholar
  7. Fujiu K, Nakayama Y, Iida H, Sokabe M, Yoshimura K (2011) Mechanoreception in motile flagella of Chlamydomonas. Nature Cell Biol 13:630–632Google Scholar
  8. Goodenough UW (1983) Motile detergent-extracted cells of Tetrahymena and Chlamydomonas. J Cell Biol 96:1610–1621PubMedCrossRefGoogle Scholar
  9. Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489–491CrossRefGoogle Scholar
  10. Harz H, Nonnengässer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Phil Trans R Soc Lond B 338:39–52CrossRefGoogle Scholar
  11. Haswell ES (2007) MscS-like proteins in plants. Curr Topics Memb 58:329–359CrossRefGoogle Scholar
  12. Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11PubMedCrossRefGoogle Scholar
  13. Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse J-M (2008) Two MscS homologues required for mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734PubMedCrossRefGoogle Scholar
  14. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  15. Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL (2007) Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 179:501–514PubMedCrossRefGoogle Scholar
  16. Hyams JS, Borisy GG (1978) Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci 33:235–253PubMedGoogle Scholar
  17. Isogai N, Kamiya R, Yoshimura K (2000) Dominance between the two flagella during phototactic turning in Chlamydomonas. Zool Sci 17:1261–1266CrossRefGoogle Scholar
  18. Kam V, Moseyko N, Nemson J, Feldman LJ (1999) Gravitaxis in Chlamydomonas reinhardtii: characterization using video microscopy and computer analysis. Int J Plant Sci 160:1093–1098PubMedCrossRefGoogle Scholar
  19. Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107PubMedCrossRefGoogle Scholar
  20. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 90:5519–5523PubMedCrossRefGoogle Scholar
  21. Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53:101–111PubMedGoogle Scholar
  22. Kreimer G, Witman GB (1994) Novel touch-induced, Ca2+-dependent phobic response in a flagellate green alga. Cell Motil Cytoskeleton 29:97–109PubMedCrossRefGoogle Scholar
  23. Matsuda A, Yoshimura K, Sineshchekov O, Hirono M, Kamiya R (1998) Isolation and characterization of novel Chlamydomonas mutants that display phototaxis but not photophobic response. Cell Motil Cytoskeleton 41:353–362PubMedCrossRefGoogle Scholar
  24. Minor DL, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels 4:28–43CrossRefGoogle Scholar
  25. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398PubMedCrossRefGoogle Scholar
  26. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945PubMedCrossRefGoogle Scholar
  27. Nakayama Y, Fujiu K, Sokabe M, Yoshimura K (2007) Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc Natl Acad Sci USA 104:5883–5888PubMedCrossRefGoogle Scholar
  28. Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K (2005) Phototactic activity in Chlamydomonas ‘non-phototactic’ mutants deficient in Ca2+-dependent control of flagellar dominance or in inner arm dynein. J Cell Sci 118:529–537PubMedCrossRefGoogle Scholar
  29. Pazour GJ, Sineshchekov OA, Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131:427–440PubMedCrossRefGoogle Scholar
  30. Quarmby LM (1996) Ca2+ influx activated by low pH in Chlamydomonas. J Gen Physiol 108:351–361PubMedCrossRefGoogle Scholar
  31. Sineshchekov O, Lebert M, Hader DP (2000) Effects of light on gravitaxis and velocity in Chlamydomonas reinhardtii. J Plant Physiol 157:247–254PubMedCrossRefGoogle Scholar
  32. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694PubMedCrossRefGoogle Scholar
  33. Stern D, Witman G, Harris EH (2008) The Chlamydomonas sourcebook, 2nd edn. Elsevier, OxfordGoogle Scholar
  34. Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717PubMedCrossRefGoogle Scholar
  35. Wakabayashi K, Ide T, Kamiya R (2009) Calcium-dependent flagellar motility activation in Chlamydomonas reinhardtii in response to mechanical agitation. Cell Motil Cytoskeleton 66:736–742PubMedCrossRefGoogle Scholar
  36. Watanabe Y, Hayashi M, Yagi T, Kamiya R (2004) Turnover of actin in Chlamydomonas flagella detected by fluorescence recovery after photobleaching (FRAP). Cell Struct Funct 29:67–72PubMedCrossRefGoogle Scholar
  37. Yoshimura K (1994) Chromophore orientation in the photoreceptor of Chlamydomonas as probed by stimulation with polarized light. Photochem Photobiol 60:594–597CrossRefGoogle Scholar
  38. Yoshimura K (1996) A novel type of mechanoreception by the flagella of Chlamydomonas. J Exp Biol 199:295–302PubMedGoogle Scholar
  39. Yoshimura K (1998) Mechanosensitive channels in the cell body of Chlamydomonas. J Memb Biol 166:149–155CrossRefGoogle Scholar
  40. Yoshimura K, Kamiya R (2001) The sensitivity of Chlamydomonas photoreceptor is optimized for the frequency of cell body rotation. Plant Cell Physiol 42:665–672PubMedCrossRefGoogle Scholar
  41. Yoshimura K, Shingyoji C, Takahashi K (1997) Conversion of beating mode in Chlamydomonas flagella induced by electric stimulation. Cell Motil Cytoskeleton 36:236–245PubMedCrossRefGoogle Scholar
  42. Yoshimura K, Matsuo Y, Kamiya R (2003) Gravitaxis in Chlamydomonas reinhardtii studied with novel mutants. Plant Cell Physiol 44:1112–1118PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations