Skip to main content

From Ants to Robots and Back: How Robotics Can Contribute to the Study of Collective Animal Behavior

  • Chapter
Book cover Bio-Inspired Self-Organizing Robotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 355))

Abstract

Swarm robotics has developed partly from biological discoveries that have been made on the organization of animal societies during the last thirty years. In this article, I review some of the ways robotics contributes in return to the study of collective animal behavior. I argue that robotics can bring significant improvements in this field, from a technical, conceptual and educational point of view. I base my discussion on five observations I have made while collaborating with computer scientists: robots require a complete specification; robots are physical entities; robots implement new technologies; robots can be inadvertent sources of biological inspiration; and robots are ”cool” gadgets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amé, J.M., Halloy, J., Rivault, C., Detrain, C., Deneubourg, J.L.: Collegial decision making based on social amplification leads to optimal group formation. Proceedings of the National Academy of Sciences of the United States of America 103(15), 5835–5840 (2006), doi:10.1073/pnas.0507877103

    Article  Google Scholar 

  2. Ayers, J., Witting, J.: Biomimetic approaches to the control of underwater walking machines. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 365(1850), 273–295 (2007), doi:10.1098/rsta.2006.1910

    Article  Google Scholar 

  3. Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C., Khan, Z., Pratt, S., Stein, A., Wilde, H.: How Multirobot Systems Research Will Accelerate Our Understanding of Social Animal Behavior. Proceedings of the IEEE 94(7), 1445–1463 (2006), doi:10.1109/JPROC.2006.876969

    Article  Google Scholar 

  4. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Sciences of the United States of America 105(4), 1232–1237 (2008), doi:10.1073/pnas.0711437105

    Article  Google Scholar 

  5. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: Stigmergy and collective robotics, pp. 181–189. MIT Press, Cambridge (1994)

    Google Scholar 

  6. Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annual Review of Entomology 46(1), 413–440 (2001), doi:10.1146/annurev.ento.46.1.413

    Article  Google Scholar 

  7. Böhlen, M.: A robot in a cage. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation. Monterey, CA (1999)

    Google Scholar 

  8. Bonabeau, E.: Self-organization in social insects. Trends in Ecology & Evolution 12(5), 188–193 (1997), doi:10.1016/S0169-5347(97)01048-3

    Article  Google Scholar 

  9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, USA (1999)

    MATH  Google Scholar 

  10. Buhl, J., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Self-organized digging activity in ant colonies. Behavioral Ecology and Sociobiology 58(1), 9–17 (2005), doi:10.1007/s00265-004-0906-2

    Article  Google Scholar 

  11. Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J.L., Theraulaz, G.: Efficiency and robustness in ant networks of galleries. The European Physical Journal B 42(1), 123–129 (2004), doi:10.1140/epjb/e2004-00364-9

    Article  Google Scholar 

  12. Burd, M.: Ecological consequences of traffic organisation in ant societies. Physica A: Statistical Mechanics and its Applications 372(1), 124–131 (2006), doi:10.1016/j.physa.2006.05.004

    Article  Google Scholar 

  13. Cain, C.J., Conte, D.A., Garcia-Ojeda, M.E., Daglio, L.G., Johnson, L., Lau, E.H., Manilay, J.O., Phillips, J.B., Rogers, N.S., Stolberg, N.S., Swift, H.F., Dawson, M.N.: INTEGRATIVE BIOLOGY: What Systems Biology Is (Not, Yet). Science 320(5879), 1013a–1014a (2008), doi:10.1126/science.1157405

    Article  Google Scholar 

  14. Camazine, S.: Self-organization in biological systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  15. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of Goal Direction for Cooperative Transport, pp. 191–202. Springer, Heidelberg (2006), doi:10.1007/11839088_17

    Google Scholar 

  16. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  17. Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3295–3300. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  18. Correll, N., Martinoli, A.: Robust Distributed Coverage using a Swarm of Miniature Robots. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 379–384. IEEE, Los Alamitos (2007), doi:10.1109/ROBOT.2007.363816

    Chapter  Google Scholar 

  19. Correll, N., Sempo, G., De Meneses, Y., Halloy, J., Deneubourg, J.I., Martinoli, A.: SwisTrack: A Tracking Tool for Multi-Unit Robotic and Biological Systems. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2185–2191 (2006), doi:10.1109/IROS.2006.282558

    Google Scholar 

  20. Couzin, I.D., Franks, N.R.: Self-organized lane formation and optimized traffic flow in army ants. Proceedings of The Royal Society Biological sciences 270(1511), 139–146 (2003), doi:10.1098/rspb.2002.2210

    Article  Google Scholar 

  21. Dematté, L., Prandi, D.: GPU computing for systems biology. Briefings in Bioinformatics 11(3), 323–333 (2010), doi:10.1093/bib/bbq006

    Article  Google Scholar 

  22. Deneubourg, J.L., Goss, S.: Collective patterns and decision making. Ethology, ecology and Evolution 1(4), 295–311 (1989)

    Article  Google Scholar 

  23. Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.M.: The blind leading the blind: Modeling chemically mediated army ant raid patterns. Journal of Insect Behavior 2(5), 719–725 (1989), doi:10.1007/BF01065789

    Article  Google Scholar 

  24. Deneubourg, J.L., Goss, S., Pasteels, J.M., Fresneau, D., Lachaud, J.P.: Self-organization mechanisms in ant societies (II): Learning in foraging and division of labor. Experientia Supplementum 54, 177–196 (1987)

    Google Scholar 

  25. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probabilistic behaviour in ants: A strategy of errors? Journal of Theoretical Biology 105(2), 259–271 (1983), doi:10.1016/S0022-5193(83)80007-1

    Article  Google Scholar 

  26. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do ants ”behave” like molecules?  3(3), 162–187 (2006), doi:10.1016/j.plrev.2006.07.001

    Google Scholar 

  27. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  28. Duchon, A., Warren, W., Kaelbling, L.: Ecological Robotics: Controlling Behavior with Optic Flow. In: Proceedings of the seventeenth annual conference of the Cognitive Science Society, p. 164. Lawrence Erlbaum, Pittsburgh (1995)

    Google Scholar 

  29. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Optimal traffic organization in ants under crowded conditions. Nature 428(6978), 70–73 (2004), doi:10.1038/nature02344.1

    Article  Google Scholar 

  30. Dussutour, A., Nicolis, S., Deneubourg, J.L., Fourcassié, V.: Collective decisions in ants when foraging under crowded conditions. Behavioral Ecology and Sociobiology 61(1), 17–30 (2006), doi:10.1007/s00265-006-0233-x

    Article  Google Scholar 

  31. Dutta, I., Bogobowicz, A.D., Gu, J.J.: Collective robotics - a survey of control and communication techniques. In: Proceedings International Conference on Intelligent Mechatronics and Automation, pp. 505–510 (2004)

    Google Scholar 

  32. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  33. Engelbrecht, A.: Fundamentals of computational swarm intelligence. Wiley, New York (2005)

    Google Scholar 

  34. Fernandez-Juricic, E., Gilak, N., McDonald, J.C., Pithia, P., Valcarcel, A.: A dynamic method to study the transmission of social foraging information in flocks using robots. Animal Behaviour 71, 901–911 (2006), doi:10.1016/j.anbehav.2005.09.008

    Article  Google Scholar 

  35. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary Conditions for the Emergence of Communication in Robots. Current Biology 17(6), 514–519 (2007)

    Article  Google Scholar 

  36. Franceschini, N., Pichon, J.M., Blanes, C., Brady, J.M.: From Insect Vision to Robot Vision [and Discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences 337(1281), 283–294 (1992), doi:10.1098/rstb.1992.0106

    Article  Google Scholar 

  37. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-Organized Aggregation Triggers Collective Decision Making in a Group of Cockroach-Like Robots. Adaptive Behavior 17(2), 109–133 (2009), doi:10.1177/1059712309103430

    Article  Google Scholar 

  38. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intelligence 1(1), 3–31 (2007), doi:10.1007/s11721-007-0004-y

    Article  Google Scholar 

  39. Garnier, S., Guérécheau, A., Combe, M., Fourcassié, V., Theraulaz, G.: Path selection and foraging efficiency in Argentine ant transport networks. Behavioral Ecology and Sociobiology 63(8), 1167–1179 (2009), doi:10.1007/s00265-009-0741-6

    Article  Google Scholar 

  40. Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal, A., Theraulaz, G.: The embodiment of cockroach aggregation behavior in a group of micro-robots. Artificial Life 14(4), 387–408 (2008)

    Article  Google Scholar 

  41. Garnier, S., Tâche, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in Pheromone Land: An Experimental Setup for the Study of Ant-like Robots. In: IEEE Swarm Intelligence Symposium, SIS 2007, pp. 37–44 (2007)

    Google Scholar 

  42. Gerbier, G., Garnier, S., Rieu, C., Theraulaz, G., Fourcassié, V.: Are ants sensitive to the geometry of tunnel bifurcation? Animal Cognition 11(4), 637–642 (2008), doi:10.1007/s10071-008-0153-4

    Article  Google Scholar 

  43. Gordon, D.M.: The organization of work in social insect colonies. Nature 380(6570), 121–124 (1996), doi:10.1038/380121a0

    Article  Google Scholar 

  44. Green, W.E., Oh, P.Y., Sevcik, K., Barrows, G.: Autonomous Landing for Indoor Flying Robots Using Optic Flow. In: ASME International Mechanical Engineering Congress, vol. 2, pp. 1347–1352. ASME, Washington (2003)

    Google Scholar 

  45. Guttal, V., Couzin, I.D.: Social interactions, information use, and the evolution of collective migration. Proceedings of the National Academy of Sciences of the United States of America, 1–6 (2010) (in press), doi:10.1073/pnas.1006874107

    Google Scholar 

  46. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said, I., Durier, V., Canonge, S., Amé, J.M., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R., Deneubourg, J.L.: Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices. Science 318(5853), 1155–1158 (2007), doi:10.1126/science.1144259

    Article  Google Scholar 

  47. Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sensors Journal 2(3), 260–271 (2002), doi:10.1109/JSEN.2002.800682

    Article  Google Scholar 

  48. Hölldobler, B., Wilson, E.O.: The ants. Belknap Press of Harvard University Press, Cambridge (1990)

    Google Scholar 

  49. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence.  31(1-4), 61–85 (2009), doi:10.1007/s10462-009-9127-4

    Google Scholar 

  50. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, pp. 1942–1948. IEEE, Piscataway (1948), doi:10.1109/ICNN.1995.488968

    Google Scholar 

  51. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002), doi:10.1126/science.1069492

    Article  Google Scholar 

  52. Kneser, J.: Collective Minds: The Intelligence of Swarms (2009)

    Google Scholar 

  53. Kube, C.R., Zhang, H.: Collective Robotics: From Social Insects to Robots. Adaptive Behavior 2(2), 189–218 (1993), doi:10.1177/105971239300200204

    Article  Google Scholar 

  54. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of Labor in a Group of Robots Inspired by Ants’ Foraging Behavior. ACM Transactions on Autonomous and Adaptive Systems 1(1), 4–25 (2006)

    Article  Google Scholar 

  55. Mamei, M., Zambonelli, F.: Spreading pheromones in everyday environments through RFID technology. In: 2nd IEEE Symposium on Swarm Intelligence, pp. 281–288. Citeseer (2005)

    Google Scholar 

  56. Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with RFID tags. ACM Transactions on Autonomous and Adaptive Systems 2(2), 4–es (2007), doi:10.1145/1242060.1242061

    Article  Google Scholar 

  57. Martinoli, A.: Collective Complexity out of Individual Simplicity. Artificial Life 7(3), 315–319 (2001)

    Article  Google Scholar 

  58. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: Multi-object clustering using minimalist robots, pp. 543–552. Springer, Heidelberg (2001), doi:10.1007/3-540-44811-X_62

    Google Scholar 

  59. Menzel, R., Giurfa, M.: Cognitive architecture of a mini-brain: the honeybee.  5(2), 62–71 (2001)

    Google Scholar 

  60. Meyer, J., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The Psikharpax project: towards building an artificial rat. Robotics and Autonomous Systems 50(4), 211–223 (2005), doi:10.1016/j.robot.2004.09.018

    Article  Google Scholar 

  61. Michelsen, A., Andersen, B.B., Storm, J., Kirchner, W.H., Lindauer, M.: How honeybees perceive communication dances, studied by means of a mechanical model. Behavioral Ecology and Sociobiology 30(3), 143–150 (1992), doi:10.1007/BF00166696

    Article  Google Scholar 

  62. Mikheyev, A.S., Tschinkel, W.R.: Nest architecture of the ant Formica pallidefulva: structure, costs and rules of excavation. Insectes Sociaux 51(1), 30–36 (2004), doi:10.1007/s00040-003-0703-3

    Article  Google Scholar 

  63. Mitri, S., Floreano, D., Keller, L.: The evolution of information suppression in communicating robots with conflicting interests. Proceedings of the National Academy of Sciences of the United States of America 106(37), 15786–15790 (2009), doi:10.1073/pnas.0903152106

    Article  Google Scholar 

  64. Noldus, L.P.J.J., Spink, A.J., Tegelenbosch, R.A.: EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, & Computers 33(3), 398–414 (2001)

    Article  Google Scholar 

  65. Noldus, L.P.J.J., Trienes, R.J.H., Hendriksen, A.H.M., Jansen, H., Jansen, R.G.: The Observer Video-Pro: New software for the collection, management, and presentation of time-structured data from videotapes and digital media files. Behavior Research Methods, Instruments, & Computers 32(1), 197–206 (2000)

    Article  Google Scholar 

  66. Ohashi, K., D’Souza, D., Thomson, J.: An automated system for tracking and identifying individual nectar foragers at multiple feeders. Behavioral Ecology and Sociobiology 64(5), 891–897 (2010)

    Article  Google Scholar 

  67. Pugh, J., Martinoli, A.: Small-scale robot formation movement using a simple on-board relative positioning system. In: Proceedings of the International Symposium on Experimental Robotics (2006)

    Google Scholar 

  68. Reaney, L.T., Sims, R.A., Sims, S.W.M., Jennions, M.D., Backwell, P.R.Y.: Experiments with robots explain synchronized courtship in fiddler crabs. Current Biology 18(2), R62–R63 (2008)

    Article  Google Scholar 

  69. Robinson, E.J.H., Richardson, T.O., Sendova-Franks, A.B., Feinerman, O., Franks, N.R.: Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behavioral Ecology and Sociobiology 63(5), 627–636 (2008), doi:10.1007/s00265-008-0696-z

    Article  Google Scholar 

  70. Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems 50(4), 177–194 (2005), doi:10.1016/j.robot.2004.09.016

    Article  Google Scholar 

  71. Schwager, M., McLurkin, J., Rus, D.: Distributed coverage control with sensory feedback for networked robots, p. 49. The MIT Press, Cambridge (2007)

    Google Scholar 

  72. Sharkey, A.J.C.: Swarm robotics and minimalism. Connection Science 19(3), 245–260 (2007), doi:10.1080/09540090701584970

    Article  Google Scholar 

  73. Sumner, S., Lucas, E., Barker, J., Isaac, N.: Radio-Tagging Technology Reveals Extreme Nest-Drifting Behavior in a Eusocial Insect. Current Biology 17(2), 140–145 (2007), doi:10.1016/j.cub.2006.11.064

    Article  Google Scholar 

  74. Tâche, F., Asadpour, M., Caprari, G., Karlen, W., Siegwart, R.: Perception and behavior of InsBot: Robot-Animal interaction issues. In: IEEE International Conference on Robotics and Biomimetics - ROBIO, pp. 517–522. IEEE, Los Alamitos (2005), doi:10.1109/ROBIO.2005.246321

    Chapter  Google Scholar 

  75. Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society B: Biological Sciences 265(1393), 327–332 (1998), doi:10.1098/rspb.1998.0299

    Article  Google Scholar 

  76. Theraulaz, G., Gautrais, J., Camazine, S., Deneubourg, J.L.: The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 361(1807), 1263–1282 (2003), doi:10.1098/rsta.2003.1198

    Article  MathSciNet  Google Scholar 

  77. Tinbergen, N., Perdeck, A.: On the Stimulus Situation Releasing the Begging Response in the Newly Hatched Herring Gull Chick (Larus Argentatus Argentatus Pont.). Behaviour 3(1), 1–39 (1951), doi:10.1163/156853951X00197

    Article  Google Scholar 

  78. Tschinkel, W.R.: Subterranean ant nests: trace fossils past and future? Palaeogeography, Palaeoclimatology, Palaeoecology 192(1-4), 321–333 (2003), doi:10.1016/S0031-0182(02)00690-9

    Article  Google Scholar 

  79. Vaughan, R., Stumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Robotics and Autonomous Systems 31, 109–117 (2000)

    Article  Google Scholar 

  80. Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araújo, A.F.R., Theraulaz, G.: Path efficiency of ant foraging trails in an artificial network. Journal of Theoretical Biology 239(4), 507–515 (2006), doi:10.1016/j.jtbi.2005.08.017

    Article  MathSciNet  Google Scholar 

  81. Vrinten, D.H., Hamers, F.F.T.: ’CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain 102(1-2), 203–209 (2003)

    Article  Google Scholar 

  82. Webb, B.: What does robotics offer animal behaviour? Animal Behaviour 60, 545–558 (2000), doi:10.1006/anbe.2000.1514

    Article  Google Scholar 

  83. Webb, B.: Can robots make good models of biological behaviour? Behavioral and Brain Sciences 24(06), 1033–1050 (2001), doi:10.1017/S0140525X01000127

    Google Scholar 

  84. Webb, B.: Using robots to understand animal behavior, vol. 38, ch.1, pp. 1–58. Academic Press, London (2008), doi:10.1016/S(X)65-3454(08)00001-6

    Google Scholar 

  85. Yan, Y., Tang, Z.: Control Architecture for Autonomous Multi-Robot System: Survey and Analysis. In: International Conference on Intelligent Computation Technology and Automation, USA, vol. 4, pp. 376–379. IEEE Computer Society Press, Los Alamitos (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garnier, S. (2011). From Ants to Robots and Back: How Robotics Can Contribute to the Study of Collective Animal Behavior. In: Meng, Y., Jin, Y. (eds) Bio-Inspired Self-Organizing Robotic Systems. Studies in Computational Intelligence, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20760-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20760-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20759-4

  • Online ISBN: 978-3-642-20760-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics