Advertisement

A Scalable Multiprocessor Architecture for Pervasive Computing

  • Long Zheng
  • Yanchao Lu
  • Jingyu Zhou
  • Minyi Guo
  • Hai Jin
  • Song Guo
  • Yao Shen
  • Jiehan Zhou
  • Jukka Riekki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6646)

Abstract

In a case study of a pervasive computing system, we have implemented a system for a JPEG encoding application. The previous system uses static deployment of computing resources, which limits computation capability.To address this limitation, this paper proposes a novel scalable architecture that allows extending a system by adding new subsystems, to meet increasing computation requirements. The novel architecture allows several subsystems to share their Resource Routers (RRs) and Processing Elements (PEs) to improve the efficiency of PEs by introducing a Share Degree (SD) mechanism. Experimental results show that when SD is equal to three, the system achieves the highest performance.

Keywords

ubiquitous multiprocessor computing resource allocation scalable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong, M., Zheng, L., Ota, K., Guo, S., Guo, M., Li, L.: Improved Resource Allocation Algorithms for Practical Image Encoding in a Ubiquitous Computing Environment. Journal of Computers 4(9), 873–880 (2009)CrossRefGoogle Scholar
  2. 2.
    Dong, M., Zheng, L., Ota, K., Guo, S., Guo, M., Li, L.: A trade-off approach to optimal resource allocation algorithm with cache technology in ubiquitous computing environment. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 1, pp. 9–15 (August 2009)Google Scholar
  3. 3.
    Dong, M., Zheng, L., Ota, K., Ma, J., Guo, S., Guo, M.: A probabilistic-approach based resource allocation algorithm in pervasive computing systems. In: International Conference on Computer Application and System Modeling (ICCASM), vol. 11, pp. V-315–V-319 (October 2010)Google Scholar
  4. 4.
    Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D., Keckler, S.W.: A nuca substrate for flexible cmp cache sharing. IEEE Transactions on Parallel and Distributed Systems 18, 1028–1040 (2007)CrossRefGoogle Scholar
  5. 5.
    Kubo, M., Ye, B., Shinozaki, A., Guo, M.: Ump-percomp: A ubiquitous multiprocessor network-based pipeline processing framework for pervasive computing environments. In: 21st International Conference on Advanced Information Networking and Applications, AINA 2007, pp. 611–618 (2007)Google Scholar
  6. 6.
    Shinozaki, A., Shima, M., Guo, M., Kubo, M.: Multiprocessor Simulator System Based on Multi-way Cluster Using Double-buffered Model. In: 21st International Conference on Advanced Information Networking and Applications, AINA 2007, pp. 893–900 (2007)Google Scholar
  7. 7.
    Shinozaki, A., Shima, M., Guo, M., Kubo, M.: A high performance simulator system for a multiprocessor system based on a multi-way cluster. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, pp. 231–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Zheng, L., Dong, M., Jin, H., Guo, M., Guo, S., Tu, X.: The core degree based tag reduction on chip multiprocessor to balance energy saving and performance overhead. In: Ding, C., Shao, Z., Zheng, R. (eds.) NPC 2010. LNCS, vol. 6289, pp. 358–372. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Long Zheng
    • 1
    • 2
  • Yanchao Lu
    • 3
  • Jingyu Zhou
    • 3
  • Minyi Guo
    • 3
  • Hai Jin
    • 1
  • Song Guo
    • 2
  • Yao Shen
    • 3
  • Jiehan Zhou
    • 4
  • Jukka Riekki
    • 4
  1. 1.Huazhong University of Science and TechnologyWuhanChina
  2. 2.The University of AizuAizu-wakamatsuJapan
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina
  4. 4.University of OuluOuluFinland

Personalised recommendations