Advertisement

Gridification of a Radiotherapy Dose Computation Application with the XtremWeb-CH Environment

  • Nabil Abdennhader
  • Mohamed Ben Belgacem
  • Raphaël Couturier
  • David Laiymani
  • Sébastien Miquée
  • Marko Niinimaki
  • Marc Sauget
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6646)

Abstract

This paper presents the design and the evaluation of the gridification of a radiotherapy dose computation application. Due to the inherent characteristics of the application and its execution, we choose the architectural context of volunteer computing. For this, we used the XtremWeb-CH environment. Experiments were conducted on a real volunteer computing testbed and show good speed-ups and very acceptable platform overhead, letting XtremWeb-CH be a good candidate for deploying parallel applications over a volunteer computing environment.

Keywords

Message Passing Interface Local Cluster Parallel Application Cluster Computing Global Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abdennadher, N., Boesch, R.: Towards a peer-to-peer platform for high performance computing. In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 412–423. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: IEEE/ACM International Symposium on Cluster Computing and the Grid. IEEE Press, Los Alamitos (May 2006)Google Scholar
  4. 4.
    Bahi, J.M., Contassot-Vivier, S., Makovicka, L., Martin, E., Sauget, M.: Neurad. Agence pour la Protection des Programmes, no: IDDN.FR.001.130035.000.S.P.2006.000.10000 (2006)Google Scholar
  5. 5.
    Bahi, J.M., Contassot-Vivier, S., Sauget, M.: An incremental learning algorithm for functional approximation. Advances in Engineering Software 40(8), 725–730 (2009), doi:10.1016/j.advengsoft.2008.12.018CrossRefzbMATHGoogle Scholar
  6. 6.
    Bahi, J.M., Couturier, R., Laiymani, D.: Comparison of conjugate gradient and multisplitting algorithms of nas benchmark with the jace environment. In: IPDPS 2008. IEEE Computer Society Press, Los Alamitos (April 2008)Google Scholar
  7. 7.
    Ben Belgacem, M., Abdennadher, N., Niinimaki, M.: Virtual ez grid: A volunteer computing infrastructure for scientific medical applications. In: Bellavista, P., Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC 2010. LNCS, vol. 6104, pp. 385–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Cerami, E.: Web Services Essentials – Distributed Applications with XML-RPC, SOAP, UDDI and WSDL. O’Reilly, Sebastopol (2002)Google Scholar
  9. 9.
    Alonso, G., Pautasso, C.: Jopera: a toolkit for efficient visual composition of web services. International Journal of Electronic Commerce (IJEC) (2005)Google Scholar
  10. 10.
    Ellert, M., Gronager, M., Konstantinov, A., Konya, B., Lindemann, J., Livenson, I., Nielsen, J.L., Niinimaki, M., Smirnova, O., Waananen, A.: Advanced resource connector middleware for lightweight computational grids. Future Generation Computer Systems 23(2), 219–240 (2007)CrossRefGoogle Scholar
  11. 11.
    Fedak, G., Germain, C., Neri, V., Cappello, F.: Xtremweb: A generic global computing system. In: IEEE International Symposium on Cluster Computing and the Grid, vol. 0, p. 582 (2001)Google Scholar
  12. 12.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with the message passing interface. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  13. 13.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-a hunter of idle workstations. In: Condor-a Hunter of Idle Workstations. IEEE, Los Alamitos (1988)CrossRefGoogle Scholar
  14. 14.
    Makovicka, L., Vasseur, A., Sauget, M., Martin, E., Gschwind, R., Henriet, J., Salomon, M.: Avenir des nouveaux concepts des calculs dosimétriques basés sur les méthodes de Monte Carlo. Radioprotection 44(1), 77–88 (2009)CrossRefGoogle Scholar
  15. 15.
    Niinimaki, M., Ben Belcagem, M., Abdennadher, N.: Xwch-ccgrid. Technical report (2011)Google Scholar
  16. 16.
    Sauget, M., Laurent, R., Henriet, J., Salomon, M., Gschwind, R., Contassot-Vivier, S., Makovicka, L., Soussen, C.: Efficient domain decomposition for a neural network learning algorithm, used for the dose evaluation in external radiotherapy. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6352, pp. 261–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency - Practice and Experience 17(2-4), 323–356 (2005)CrossRefGoogle Scholar
  18. 18.
    Vasseur, A., Makovicka, L., Martin, E., Sauget, M., Contassot-Vivier, S., Bahi, J.M.: Dose calculations using artificial neural networks: a feasibility study for photon beams. Nucl. Instr. and Meth. in Phys. Res. B 266(7), 1085–1093 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nabil Abdennhader
    • 1
  • Mohamed Ben Belgacem
    • 1
  • Raphaël Couturier
    • 2
  • David Laiymani
    • 2
  • Sébastien Miquée
    • 2
  • Marko Niinimaki
    • 1
  • Marc Sauget
    • 3
  1. 1.University of Applied Sciences, Western Switzerland, hepia GenevaSwitzerland
  2. 2.IUT Belfort-MontbéliardLaboratoire d’Informatique de l’université de Franche-ComtéBelfortFrance
  3. 3.FEMTO-ST, ENISYS/IRMAMontbéliardFrance

Personalised recommendations