Advertisement

Anatomy of Automatic Mobile Carbon Footprint Calculator

  • Ville Könönen
  • Miikka Ermes
  • Jussi Liikka
  • Arttu Lämsä
  • Timo Rantalainen
  • Harri Paloheimo
  • Jani Mäntyjärvi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6646)

Abstract

A number of web-based systems provide environmental information to support our ecological lifestyle. However, there exists a need for more accurate and automated online systems facilitating personalised ecological awareness. This paper presents a travel type detection system for an automatic mobile carbon emission calculator. The system is able to detect automatically trips made by mobile users and provide them an easy and quick way for estimating the travel related CO2 emissions. The system is based on energy and computationally effective multisource fusion in a mobile device. The paper introduces the system with design rationale, explains smartphone implementation and provides comprehensive evaluation from both accuracy and energy efficiency points of view. The system attained the overall travel type detection accuracy of 77% and the daily average current consumption of 33mA. The results show great promise for the developed methodology to facilitate 24/7 carbon emission estimation of a traveller.

Keywords

Mobile Phone Mobile Device Mobile User Current Consumption Trip Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of The 7th Annual International Conference on Mobile Systems, pp. 55–68 (2009)Google Scholar
  2. 2.
    Zheng, Y., Quannan, L., Yukun, C., Xing, X., Wei-Ying, M.: Understanding mobility based on GPS data. In: Proceedings of the Tenth International Conference on Ubiquitous Computing (UbiComp 2008), pp. 312–321 (2008)Google Scholar
  3. 3.
    Ermes, M., Pärkkä, J., Mäntyjärvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Transactions on Information Technology in Biomedicine 12(1), 20–26 (2008)CrossRefGoogle Scholar
  4. 4.
    Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J., Ermes, M.: Automatic feature selection for context recognition in mobile devices. Pervasive and Mobile Computing (2009) (in press)Google Scholar
  5. 5.
    Mäntyjärvi, J., Himberg, J., Korpipää, P., Mannila, H.: Extracting the context of a mobile device user. In: Proceedings of the International Symposium on Human-Machine Systems (HMS), pp. 445–450 (2001)Google Scholar
  6. 6.
    Froechlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.A.: Ubigreen: Investigating a mobile tool for tracking and supporting green transportation habits. In: Proceedings of 27th International Conference on Human Factors in Computing Systems (CHI 2009), pp. 1043–1052 (2009)Google Scholar
  7. 7.
    Pärkkä, J., Cluitmans, L., Korpipää, P.: Palantir context data collection, annotation and PSV file format. In: Proceedings of the Pervasive, Workshops, pp. 9–16 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ville Könönen
    • 1
  • Miikka Ermes
    • 1
  • Jussi Liikka
    • 1
  • Arttu Lämsä
    • 1
  • Timo Rantalainen
    • 2
  • Harri Paloheimo
    • 2
  • Jani Mäntyjärvi
    • 1
  1. 1.VTT Technical Research Centre of FinlandFinland
  2. 2.Nokia Research CentreFinland

Personalised recommendations