Skip to main content

Transient solution and dissolution of gasses in liquid flows

  • Chapter
Multiphase Flow Dynamics 4
  • 3898 Accesses

Abstract

Soft drinks and champagne are examples of liquids containing sizable quantities of gases dissolved under pressure. In liquids usually used in technology there are dissolved inert gases and also micro-bubbles. It is known that at p = 105 Pa, T 2o  = 298.15K the amount of dissolved gases and micro-bubbles in the coolant is α 1o  ≅ 0.005, for boiling water nuclear reactors, and α 1o  ≅ 0.001, for pressurized water reactor, see Malnes and Solberg (1973). Brennen (1995), p. 20, reported that it takes weeks of deaeration to reduce the concentration of air in the water tunnel below 3ppm (saturation at atmospheric pressure is about 15ppm). Wolf (1982- 1984) reported that it took him about 18 hours per single large scale test to increase the pressure to ~11MPa, to warm and mix the water inside the pressure vessel including 5 hours degassing of the water from 8mg O 2/l to a value of 2mg O 2/l before each test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. Heat Mass Transfer 32, 1605–1618 (1989)

    Article  Google Scholar 

  • Acrivos, A., Taylor, T.D.: Heat and mass transfer from single spheres in stokes flow. The Physics of Fluids 5(4), 387–394 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Acrivos, A., Goddard, J.: Asymptotic expansion for laminar forced- convection heat and mass transfer. Part 1, J. of Fluid Mech. 23, 273 (1965)

    MathSciNet  Google Scholar 

  • Aksel’Rud, G.A.: Zh. fiz. Khim. 27, 1445 (1953)

    Google Scholar 

  • Albring, W.: Angewandte Stroemungslehre, Verlag Theodor Steinkopf, Dresden, 4. Auflage (1970)

    Google Scholar 

  • Al-Diwani, H.K., Rose, J.W.: Free convection film condensation of steam in presence of non condensing gases. Int. J. Heat Mass Transfer 16, 1959 (1973)

    Google Scholar 

  • Avdeev, A.A.: Growth and condensation velocity of steam bubbles in turbulent flow. Teploenergetika, 1, 53–55 (1986) (in Russian)

    Google Scholar 

  • Banerjee, S.: Turbulence structure and transport mechanisms at interfaces. In: Proc. Ninth Int. Heat Transfer Conference, Jerusalem, Israel, vol. 1, pp. 395–418 (1990)

    Google Scholar 

  • Bankoff, S.S.: Some Condensation Studies Pertinent to LWR Safety. Int. J. Multiphase Flow 6, 51–67 (1980)

    Article  Google Scholar 

  • Batchelor, F.K.: The theory of homogeneous turbulence. The University Press, Cambridge (1953)

    MATH  Google Scholar 

  • Berman, L.D.: Soprotivlenie na granize razdela fas pri plenochnoi kondensazii para nizkogo davleniya, Tr. Vses. N-i, i Konstrukt In-t Khim. Mashinost, vol. 36 p. 66 (1961)

    Google Scholar 

  • Billet, M.L., Holl, J.W.: Scale effects on various types of limited cavitation. In: Parkin, B.R., Morgan, W.B. (eds.) Int. Symposium on Cavitation Inception ASME Winter Annual Meeting, New Orleans (1979)

    Google Scholar 

  • Boussinsq, M.: Calcul du pourvoir retroidissant des courant fluids. J. Math. Pures Appl. 1, 285 (1905)

    Google Scholar 

  • Brauer, H., et al.: Chem. Ing. Tech. 48, 737–741 (1976)

    Article  MathSciNet  Google Scholar 

  • Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Brumfield, L.K., Houze, K.N., Theofanous, T.G.: Turbulent mass transfer at free, Gas-Liquid Interfaces, with Applications to Film Flows. Int. J. Heat Mass Transfer 18, 1077–1081 (1975)

    Article  Google Scholar 

  • Bunker, R.S., Carey, V.P.: Modeling of turbulent condensation heat transfer in the boiling water reactor primary containment. Nucl. Eng. Des. 91, 297–304 (1986)

    Article  Google Scholar 

  • Calderbank, P.H., Moo-Young, M.B.: Chem. Eng. Sc. 16, 39 (1962)

    Article  Google Scholar 

  • Calderbank, P.H.: Gas absorption from bubbles. In: Chemical Engineering, October 1967, pp. CE209-CE233 (1967)

    Google Scholar 

  • Carlsow, H.S., Jaeger, J.C.: Condution of heat in solids, Oxford (1959)

    Google Scholar 

  • Celata, G.P., Cumo, M., D’Annibale, F., Farello, G.E.: Direct contact condensation of steam on droplets. Int. J. Multiphase Flow 17(2), 191–211 (1991)

    Article  MATH  Google Scholar 

  • Cha, Y.S., Henry, R.E.: Bubble growth during decompression of liquids. Transaction of the ASME, Journal of Heat Transfer 103, 56–60 (1981)

    Article  Google Scholar 

  • Chiang, C.H., Sirignano, W.A.: Numerical analysis of convecting and interacting vaporizing fuel droplets with variable properties. Presented at the 28th AIAA Aerospace Sciences Mtg, Reno (November 1990)

    Google Scholar 

  • Churchill, R.V.: Operational mathematics, pp. 132–134. McGraw Hill, New York (1958)

    MATH  Google Scholar 

  • Churchill, S.W., Brier, J.C.: Convective heat transfer from a gas stream at high temperature to a circular cylinder normal to the flow. In: Chem. Engng. Progr. Simp. Ser. 51, vol. 17, pp. 57–65 (1955)

    Google Scholar 

  • Clift, R., Ggarce, J.R., Weber, M.E.: Bubbles, drops, and particles. Academic Press, New York (1978)

    Google Scholar 

  • Condie, K.G., et al.: Comparison of heat and mass transfer correlation with forced convective non equilibrium post-CHF experimental data. In: Dhir, V.K., Schrock, V.E. (eds.) Proc. of 22nd Nat. Heat Transfer Conf. & Exhibition. Basic Aspects of Two-Phase Flow and Heat Transfer, Niagara Falls, New York, August 5-8, pp. 57–65 (1984)

    Google Scholar 

  • Daily, J.W., Johnson, J.R.: Turbulence and boundary-layer effect on cavitation inception from gas nuclei. Transactions of the ASME 78, 1695–1705 (1956)

    Google Scholar 

  • Deitsch, M.E., Philiphoff, G.A.: Two-phase flow gas dynamics. Energoisdat, Moscu (1981) (in Russian)

    Google Scholar 

  • Eddington, R.I., Kenning, D.B.R.: Comparison of gas and vapor bubble nucleation on brass surface in water. Int. J. Heat Mass Transfer 21, 855–862 (1978)

    Article  Google Scholar 

  • Epstein, P.S., Plesset, M.S.: On the stability of gas bubbles in liquid-gas solution. J. Chem. Phys. 18, 1505–1509 (1950)

    Article  Google Scholar 

  • Fedorovich, E.D., Rohsenow, W.M.: The effect of vapor subcooling on film condensation of metals. Int. J. of Heat Mass Transfer 12, 1525–1529 (1968)

    Article  Google Scholar 

  • Feng, Z.-G., Michaelides, E.E.: Unsteady heat transfer from a spherical particle at finite Peclet numbers. ASME Journal of Fluids Engineering 118, 96–102 (1986)

    Article  Google Scholar 

  • Fieder, J., Russel, K.C., Lothe, J., Pound, G.M.: Homogeneous nucleation and growth of droplets in vapours. Advances in Physics 15, 111–178 (1966)

    Article  Google Scholar 

  • Fortescue, G.E., Pearson, J.R.A.: On gas absorption into a turbulent liquid. Chem. Engng. Sci. 22, 1163–1176 (1967)

    Article  Google Scholar 

  • Ford, J.D., Lekic, A.: Rate of growth of drops during condensation. Int. J. Heat Mass Transfer 16, 61–64 (1973)

    Article  Google Scholar 

  • Fourier, J.: Theory analytique de la chaleur (1822)

    Google Scholar 

  • Frenkel, F.I.: Selected works in gasdynamics. Nauka, Moscu (1973) (in Russian)

    Google Scholar 

  • Friedlander, S.K.: A. I. Ch. Eng. J. 3, 43 (1957)

    Google Scholar 

  • Friedlander, S.K.: A. I. Ch. Eng. J. 7, 347 (1961)

    Google Scholar 

  • Froessling, N.: Beitr. Geophys. 32, 170 (1938)

    Google Scholar 

  • Furth, R.: Proc. Cambr. Philos. Soc. 37, 252 (1941)

    Article  Google Scholar 

  • Gates, E.M., Bacon, J.: Determination of the cavitation nuclei distribution by holography. J. Ship Res. 22(1), 29–31 (1978)

    Google Scholar 

  • Gibbs, J.W.: Thermodynamische Studien (1878); Leipzig: Amer. J. Sci. and Arts XVI, 454-455 (1982)

    Google Scholar 

  • Gnielinski, V.: Berechnung mittlerer Waerme- und Stoffuebertragungskoeffizienten an laminar und turbulent ueberstroemenden Einzelkoerpern mit Hilfe einer einheitlichen Gleichung. Forsch. Ing. Wes. 41(5), 145–153 (1975)

    Article  Google Scholar 

  • Hadamard, J.: Dokl. Akad. Nauk, SSSR 152, 1734 (1911)

    Google Scholar 

  • Hammitt, F.G.: Cavitation and multiphase flow phenomena. McGraw-Hill Inc., New York (1980)

    Google Scholar 

  • Hausen, H.: Darstellung des Waermeueberganges in Roehren durch verallgemeinerte Potenzgleichungen. Verfahrenstechnik 9(4/5), 75–79 (1958)

    Google Scholar 

  • Hertz, H.: Wied. Ann. 17, 193 (1882)

    Google Scholar 

  • Hobbhahn, W.K.: Modeling of condensation in light water reactor safety. In: Mueller, U., Rehme, K., Rust, K., Braun, G. (eds.) Proc. of the Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, October 10-13, vol. 2, pp. 1047–1053 (1989)

    Google Scholar 

  • Huang, T.T.: The effect of turbulence simulation on cavitation inception of axisymmetric headforms. In: Parkin, B.R., Morgan, W.B. (eds.) Int. Symposium on Cavitation Inception ASME Winter Annual Meeting, New Orleans (1984)

    Google Scholar 

  • Hughes, E.D., Paulsen, M.P., Agee, L.J.: A drift-flux model of two-phase flow for RETRAN. Nuclear Technology 54, 410–420 (1981)

    Google Scholar 

  • Hunt, D.L.: The effect of delayed bubble growth on the depressurization of vessels Containing high temperature water. UKAEA Report AHSB(S), R 189 (1970)

    Google Scholar 

  • Isenberg, J., Sideman, S.: Direct contact heat transfer with change of phase: Bubble condensation in immiscible liquids. Int. J. Heat Mass Transfer 13, 997–1011 (1970)

    Article  Google Scholar 

  • Jakob, M., Linke, W.: Der Waermeübergang von einer waagerechten Platte an sidendes Wasser. Forsch. Ing. Wes. 4, 75–81 (1933)

    Article  Google Scholar 

  • Jensen, R.J., Yuen, M.C.: Interphase transport in horizontal stratified concurrent flow, U.S. Nuclear Regulatory Commission Report NUREG/CR-2334 (1982)

    Google Scholar 

  • Katz, J.: Determination of solid nuclei and bubble distribution in water by holography, Calif. Inst. of Techn., Eng. and Appl. Sci. Div. Rep. No. 183-3 (1978)

    Google Scholar 

  • Keller, A.P.: Cavitation inception measurements and flow visualization on asymetric bodies at two different free stream turbulence levels and test procedures. In: Int. Symposium on Cavitation Inception, ASME Winter Annual Meeting, New York (1979)

    Google Scholar 

  • Kendouch, A.A.: Theoretical and experimental investigations into the problem of transient two-phase flow and its application to reactor safety, Ph.D.Thesis, Department of Thermodynamics and Fluid Mechanics, University of Strathclyde, U.C (1976)

    Google Scholar 

  • Kim, H.J., Bankoff, S.G.: Local heat transfer coefficients for condensation in stratified countercurrent steam - water flows. Trans. ASME 105, 706–712 (1983)

    Article  Google Scholar 

  • Kim, M.H., Corradini, M.L.: Modeling of condensation heat transfer in a reactor containment. Nucl. Eng. and Design 118, 193–212 (1990)

    Article  Google Scholar 

  • Knapp, R.T., Levy, J., Brown, F.B., O’Neill, J.P.: The hydrodynamics laboratory at the California Institute of Technology. Trans. ASME 70, 437 (1948)

    Google Scholar 

  • Knowles, J.B.: A mathematical model of vapor film destabilization, Report AEEW-R-1933 (1985)

    Google Scholar 

  • Knudsen, M.: Ann. Physic 47, 697 (1915)

    Article  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics 2. Mechanical and Thermal Interactions. Springer, Heidelberg (2002, 2004)

    Google Scholar 

  • Kremeen, R.W., McGraw, J.T., Parkin, B.R.: Mechanism of cavitation inception and the released scale effects problem. Trans. Am. Soc. Mech. Engs. 77, 533 (1955)

    Google Scholar 

  • Kuiper, G.: Some experiments with distinguished types of cavitation on ship properties. In: Morgan, W.B., Parkin, B.R. (eds.) Int. Symposium on Cavitation Inception ASME Winter Annual Meeting, New Orleans (1979)

    Google Scholar 

  • Labunzov, D.A.: State of the art of the nuclide boiling mechanism of liquids. In: Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, pp. 98–115 (1974) (in Russian)

    Google Scholar 

  • Labunzov, D.A., Krjukov, A.P.: Processes of intensive flushing. Thermal Engineering 24(4), 8–11 (1977) (in Russian)

    Google Scholar 

  • Lamont, J.C., Scott, D.S.: An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal 16(4), 513–519 (1970)

    Article  Google Scholar 

  • Lamont, J.C., Yuen, M.C.: Interface transport in horizontal stratified concurrent flow, U.S. Nuclear Regulatory Commission Report NUREG/CR-2334 (1982)

    Google Scholar 

  • Langmuir, I.: Physik. Z. 14, 1273 (1913)

    Google Scholar 

  • Langmuir, I.: Jones HA and Mackay GMJ. Physic. Rev. 30, 201 (1927)

    Article  Google Scholar 

  • Lienhard, J.: A heat transfer textbook. Prentice-Hall, Inc., Engelwood Cliffts

    Google Scholar 

  • Lee, K., Ryley, D.J.: The evaporation of water droplets in superheated steam. J. of Heat Transfer 90 (November 1968)

    Google Scholar 

  • Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  • Lochiel, A.C.: Ph. D. Thesis, University of Edinburgh (1963)

    Google Scholar 

  • Ludvig, A.: Untersuchungen zur spontaneous Kondensation von Wasserdampf bei stationaerer Ueberschalllstroemung unter Beruecksichtigung des Realgasverhaltens. Dissertation, Universitaet Karlsruhe, TH (1975)

    Google Scholar 

  • Mason, B.J.: Spontaneous condensation of water vapor expansion chamber experiments. Proc. Phys. Soc. London, Serie B 64, 773–779 (1951)

    Article  Google Scholar 

  • Mason, B.J.: The Physics of Clouds. Clarendon Press, Oxford (1957)

    Google Scholar 

  • Michaelides, E.E.: Hydrodynamic force and heat/mass transfer from particles, bubbles and drops – The Freeman Scholar Lecture. ASME Journal of Fluids Engineering 125, 209–238 (2003)

    Article  Google Scholar 

  • Mills, A.F.: The condensation of steam at low pressure, Techn. Report Series No. 6, Issue 39. Space Sciences Laboratory, University of California, Berkeley

    Google Scholar 

  • Mills, A.F., Seban, R.A.: The condensation coefficient of water. J. of Heat Transfer 10, 1815–1827 (1967)

    Article  Google Scholar 

  • Malnes, D., Solberg, K.: A fundamental solution to the critical two-phase flow problems, applicable to loss of coolant accident analysis. SD-119, Kjeller Inst., Norway (May 1973)

    Google Scholar 

  • Nabavian, K., Bromley, L.A.: Condensation coefficient of water. Chem. Eng. Sc. 18, 651–660 (1963)

    Article  Google Scholar 

  • Nigmatulin, R.I.: Basics of the mechanics of the heterogeneous fluids, Moskva, Nauka (1978) (in Russian)

    Google Scholar 

  • O’Hern, T.J., Katz, J., Acosta, A.J.: Holographic measurements of cavitation nuclei in the see. In: Proc. ASME Cavitation and Multiphase Flow Forum, pp. 39–42 (1988)

    Google Scholar 

  • Parkin and Kermeen RW, The roles of convective air diffusion and liquid tensile stresses during cavitation inception. In: Proc. IAHR Symposium of Cavitation and Hydraulic Machinery, Sendai, Japan (1963)

    Google Scholar 

  • Peterson, F.B., et al.: Comparative measurements of bubble and particulate spectra by three optical measurements methods, Proc. 14th Int. Towing Conf. (1975)

    Google Scholar 

  • Petukhov, B.S., Popov, V.N.: Theoretical calculation of heat exchange and friction resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties. High Temperature 1, 69–83 (1963)

    Google Scholar 

  • Pohlhausen, E.: Der Waermeaustausch zwischen festen Koerpern und Fluessigkeiten mit kkleiner Reibung und kleiner Waermeleitung. Z. angew. Math. Mech. 1(2), 115–121 (1921)

    Article  Google Scholar 

  • Ranz, W., Marschal Jr., W.: Evaporation from drops. Ch. Eng. Progress 48, 141–146 (1952)

    Google Scholar 

  • Rohsenow, W.M., Choi, H.: Heat, mass and momentum transfer. Prentice - Hall Publishers, New Jersey (1961)

    Google Scholar 

  • Rosenberg, B.: Report no 727. The David Taylor Model Basin, Washington DC (1950)

    Google Scholar 

  • Rouse, H.: Cavitation in the mixing zone of a submerged jet, La Houille Blanche (January-February 1953)

    Google Scholar 

  • Saha, P.: Int. J. Heat and Mass Transfer 23, 481 (1980)

    Article  Google Scholar 

  • Samson, R.E., Springer, G.S.: Condensation on and evaporation from droplets by a moment method. J. Fluid Mech. 36, 577–584 (1969)

    Article  Google Scholar 

  • Siddique, M., Golay, M.W.: Theoretical modeling of forced convection condensation of steam in a vertical tube in presence of non condensable gas. Nuclear Technology 106 (May 1994)

    Google Scholar 

  • Simoneau, R.J.: Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas, NASA Technical Paper, USA (1981)

    Google Scholar 

  • Skripov, W.P., Sinizyn, E.N., Pavlov, P.A., Ermakov, G.W., Muratov, G.N., Bulanov, N.B., Bajdakov, W.G.: Thermophysical properties of liquids in meta-stable state, Moscu, Atomisdat (1980) (in Russia)

    Google Scholar 

  • Slattery, J.C.: Interfacial transport phenomena. Springer, Heidelberg (1990)

    Google Scholar 

  • Soo, S.L.: Fluid dynamics of multiphase systems, Massachusetts, Woltham (1969)

    Google Scholar 

  • Spalding, D.B.: The combustion of liquid fuels. In: Proc. 4th Symp (Int.) on Combustion, pp. 847–864. Williams & Wilkins, Baltimore (1953)

    Google Scholar 

  • Tanaka, M.: Heat transfer of a spray droplet in a nuclear reactor containment. Nuclear Technology 47, 268 (1980)

    Google Scholar 

  • Takadi, T., Maeda, S.: Vhem. Engng. 25, 254 (1961)

    Google Scholar 

  • Taylor, G.I.: Proc. Roy. Soc. A 151, 429 (1935)

    Google Scholar 

  • Taylor, G.I.: The mean value of the fluctuation in pressure and pressure gradient in a turbulent flow. In: Proceedings of the Cambridge Philosophical Society, pp. 380–384 (1936)

    Google Scholar 

  • Theofanous, T.G., Houze, R.N., Brumfield, L.K.: Turbulent mass transfer at free gas-liquid interfaces with applications to open-channel, bubble and jet flows. Int. J. Heat Mass Transfer 19, 613–624 (1975)

    Article  Google Scholar 

  • Uchida, U., Oyama, A., Togo, Y.: Evolution of post - incident cooling system of light water reactors. In: Proc. 3th Int. Conf. Peaceful Uses of Atomic Energy, International Atomic Energy Agency, Vienna, Austria, vol. 13, p. 93 (1964)

    Google Scholar 

  • Van Vingaarden, L.: On the growth of small cavitation bubbles by convective diffusion. Int. J. Heat Matt Transfer 10, 127–134 (1967)

    Article  Google Scholar 

  • VDI-Waermeatlas, 4. Auflage VDI-Verlag (1984)

    Google Scholar 

  • Volmer, M.: Kinetik der Phasenbildung, Dresden und Leipzig, Verlag von Theodor Steinkopff (1939)

    Google Scholar 

  • Ward, D.M., Trass, O., Johnson, A.I.: Can. J. Chem. Eng. 40, 164 (1962)

    Article  Google Scholar 

  • Wilson, J.F.: Primary separation of steam from water by natural separation. US/EURATOM Report ACNP-65002 (1965)

    Google Scholar 

  • Wolf, L., et al. (1982-1984) HDR Sicherheitsprogramm (Investigations of RPV internals during blow down) Kernforschungszentrum Karlsruhe. Reports in German

    Google Scholar 

  • Zeldovich, J.B.: To the theory of origination of the new phase, cavitation. Journal of Experimental and Theoretical Physics 12(11/12), 525–538 (1942)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Transient solution and dissolution of gasses in liquid flows. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20749-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20749-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20748-8

  • Online ISBN: 978-3-642-20749-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics