Skip to main content

LT-Codes and Phase Transitions for Mutual Information

(Invited Talk)

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

Abstract

The last two decades have witnessed a full revival of graph based codes. The advent of Turbo codes [1] in the early 1990’s, the revival of Gallager’s LDPC codes in the 1990’s [12,11,7,8], and a decade long research on their properties [16] have brought fundamental changes to coding theory in general, and to the practical design of codes in particular. Today, a number of international standards such as DVB-S2, ITU-T G.hn, or 10 GBase-T use LDPC codes for the transmission of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding. In: Proceedings of ICC 1993, Geneva, Switzerland, pp. 1064–1070 (May 1993)

    Google Scholar 

  2. Byers, J., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: proceedings of ACM SIGCOMM 1988 (1998)

    Google Scholar 

  3. Etesami, O., Shokrollahi, A.: Raptor codes on binary memoryless symmetric channels. IEEE Trans. Inform. Theory 52(5), 2033–2051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kolchin, V.: Random Graphs. Encyclopedia of Mathematics and its Applications, vol. 53. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Kumar, K., Pakzad, P., Salavati, A., Shokrollahi, A.: Phase transitions for mutual information. In: 2010 6th International Symposium on Turbo Codes and Iterative Information Processing (ISTC), pp. 137–141 (2010)

    Google Scholar 

  6. Luby, M.: LT-codes. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 271–280 (2002)

    Google Scholar 

  7. Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.: Analysis of low density codes and improved designs using irregular graphs. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 249–258 (1998)

    Google Scholar 

  8. Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.: Improved low-density parity-check codes using irregular graphs and belief propagation. In: Proceedings 1998 IEEE International Symposium on Information Theory, p. 117 (1998)

    Google Scholar 

  9. Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.: Efficient erasure correcting codes. IEEE Trans. Inform. Theory 47, 569–584 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luby, M.G.: Lt codes. In: Proceedings of 43rd IEEE Symposium Foundations of Computer Science, p. 10 (2002)

    Google Scholar 

  11. MacKay, D.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory 45, 399–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. MacKay, D., Neal, R.: Good codes based on very sparse matrices. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 100–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Measson, C., Montanari, A., Urbanke, R.: Maxwell Construction: The Hidden Bridge Between Iterativew and Maximum a Posteriori Decoding. IEEE Transansactions on Information Theory 54(12), 5277–5307 (2008)

    Article  MATH  Google Scholar 

  14. Montanari, A.: Tight bounds for ldpc and ldgm codes under map decoding. IEEE Transactions on Information Theory 51(9), 3221–3246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pakzad, P., Shokrollahi, A.: EXIT functions for LT and raptor codes, and asymptotic ranks of random matrices. In: Proc. of the IEEE International Symposium on Information Theory (ISIT), 2007, pp. 411–415 (June 2007)

    Google Scholar 

  16. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  17. Shokrollahi, A.: Raptor codes. IEEE Trans. Inform. Theory 52(6), 2551–2567 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shokrollahi, A. (2011). LT-Codes and Phase Transitions for Mutual Information. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics