Skip to main content

Learning Read-Constant Polynomials of Constant Degree Modulo Composites

  • Conference paper
Computer Science – Theory and Applications (CSR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6651))

Included in the following conference series:

Abstract

Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \(\text{ACC}^0\). They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable in the target polynomial appears in a constant number of monomials. Our algorithm extends to superconstant but low degree polynomials and still runs in quasipolynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenstein, H., Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On learning read-k-satisfy-j dnf. SIAM J. Comput. 27(6), 1515–1530 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with queries. J. ACM 40(1), 185–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in \(\text{NC}^1\). J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing boolean functions as polynomials modulo composite numbers. Comput. Complexity 4, 367–382 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrington, D.A.M., Straubing, H.: Superlinear lower bounds for bounded-width branching programs. J. Comput. Syst. Sci. 50(3), 374–381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrington, D.A.M., Straubing, H., Thérien, D.: Non-uniform automata over groups. Inform. and Comput. 89(2), 109–132 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrington, D.A.M., Thérien, D.: Finite monoids and the finite structure of \(\text{NC}^1\). J. ACM 35(4), 941–952 (1988)

    Article  MATH  Google Scholar 

  8. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. J. ACM 47, 506–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J.: Estimation of certain exponential sums arising in complexity theory. C. R. Acad. Sci. Paris 340(9), 627–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for regular branching programs. In: 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 40–47. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  11. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching programs. In: 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 30–39. IEEE Computer Society Press, Los Alamitos (2010)

    Google Scholar 

  12. Bshouty, N., Tamon, C., Wilson, D.: Learning matrix functions over rings. Algorithmica 22, 91–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chattopadhyay, A.: Multilinear polynomials modulo composites. Bulletin of the European Association on Theoretical Computer Science, Computational Complexity Column, 100 (February 2010)

    Google Scholar 

  14. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st Annual Symposium on Theory of Computing, pp. 39–44. ACM Press, New York (2009)

    Chapter  Google Scholar 

  15. Gavaldà, R., Thérien, D.: An algebraic perspective on boolean function learning. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 201–215. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Gopalan, P.: Constructing ramsey graphs from boolean function representations. In: 21st Annual IEEE Conference on Computational Complexity, pp. 115–128. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  17. Grolmusz, V.: On the weak mod m representation of boolean functions. Chicago J. Theoret. Comput. Sci. (1995)

    Google Scholar 

  18. Helmbold, D.P., Sloan, R.H., Warmuth, M.K.: Learning nested differences of intersection-closed concept classes. Machine Learning 5, 165–196 (1990)

    MATH  Google Scholar 

  19. Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group products. In: 43rd Annual ACM Symposium on Theory of Computing. ACM Press, New York (2011, to appear)

    Google Scholar 

  20. Péladeau, P., Thérien, D.: Sur les langages reconnus par des groupes nilpotents. C. R. Math. Acad. Sci. Paris Sér I Math. 306(2), 93–95 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Péladeau, P., Thérien, D.: On the languages recognized by nilpotent groups (a translation of ”sur les languages reconnus par des groupes nilpotents”). In: Electronic Colloquium on Computational Complexity (ECCC), vol. 8(40) (2001)

    Google Scholar 

  22. Razborov, A.A.: Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Math. Notes of the Acad. of Sci. of USSR 41(3), 333–338 (1987)

    Article  MATH  Google Scholar 

  23. Schapire, R.E., Sellie, L.: Learning sparse multivariate polynomials over a field with queries and counterexamples. J. Comput. Syst. Sci. 52(2), 201–213 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: 19th Annual ACM Symposium on Theory of Computing, pp. 77–82. ACM Press, New York (1987)

    Google Scholar 

  25. Tardos, G., Barrington, D.A.M.: A lower bound on the \(\text{MOD}\)-6 degree of the \(\text{OR}\) function. Comput. Complexity 7(2), 99–108 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chattopadhyay, A., Gavaldà, R., Hansen, K.A., Thérien, D. (2011). Learning Read-Constant Polynomials of Constant Degree Modulo Composites. In: Kulikov, A., Vereshchagin, N. (eds) Computer Science – Theory and Applications. CSR 2011. Lecture Notes in Computer Science, vol 6651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20712-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20712-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20711-2

  • Online ISBN: 978-3-642-20712-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics