Skip to main content

Recent Developments in the Lewis Acidic Chemistry of Selenium and Tellurium Halides and Pseudo-Halides

  • Chapter
  • First Online:
Selenium and Tellurium Chemistry

Abstract

Recent advances in the electrophilic chemistry of the group 16 elements (the chalcogens) is reviewed with a particular emphasis on their Lewis acidic behavior, a counterintuitive bonding mode for these normally electron rich elements. On going themes include redox reactions between the chalcogen tetrahalides (ChX4; Ch = Se, Te; X = Cl, Br, I) and neutral 2-electron ligands with concomitant reduction of the group 16 centre and elimination of reactive X2 as a by-product. Use of unstable ChX2 circumvents this problem, and strategies to stabilize and use the dihalides is discussed. The use of chalcogen pseudo-halides, where X is an anionic leaving group is presented. Employing these pseudo-halides can eliminate pathways for side reaction, and are easily displaced allowing for the isolation of a variety of highly charged homoleptic coordination complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Husebye S, George JW (1969) Inorg Chem 8:313–319

    Article  CAS  Google Scholar 

  2. Fleischer H, Schollmeyer D (2002) Acta Crystallogr E58:o901–o903

    CAS  Google Scholar 

  3. Katsaros N, George JW (1969) J Inorg Nucl Chem 31:3503–3508

    Article  CAS  Google Scholar 

  4. Husebye S, Tornroos KW (2000) Acta Crystallogr C56:1242–1244

    CAS  Google Scholar 

  5. Williams DJ, Bevilacqua VLH, Morson PA, Pennington WT, Schimek GL, Kawai NT (2000) Inorg Chim Acta 308:129–134

    Article  CAS  Google Scholar 

  6. Levason W, Reid G, Victor M, Zhang W (2009) Polyhedron 28:4010–4016

    Article  CAS  Google Scholar 

  7. Carmalt CJ, Norman NC, Farrugia LJ (1995) Polyhedron 14:1405–1413

    Article  CAS  Google Scholar 

  8. Cordes AW, Hughes TV (1964) Inorg Chem 3:1640–1641

    Article  CAS  Google Scholar 

  9. Beattie IR, Milne M, Webster M, Blayden HE, Jones PJ, Killean RCG, Lawrence JL (1969) J Chem Soc 482–485

    Google Scholar 

  10. Dutton JL, Tabeshi R, Jennings MC, Lough A, Ragogna PJ (2007) Inorg Chem 46:8594–8602

    Article  CAS  Google Scholar 

  11. Kuhn N, Abu-Rayyan A, Piludu C, Steimann M (2005) Heteroatom Chem 16:316–319

    Article  CAS  Google Scholar 

  12. Ellis BD, Dyker CA, Decken A, Macdonald CLB (2005) Chem Commun 1965–1967

    Google Scholar 

  13. Ellis BD, Carlesimo M, Macdonald CLB (2003) Chem Commun 1946–1947

    Google Scholar 

  14. Ellis BD, Macdonald CLB (2006) Inorg Chem 45:6864–6874

    Article  CAS  Google Scholar 

  15. Schmidpeter A, Lochschmidt S, Sheldrick WS (1982) Angew Chem Int Ed 21:63–64

    Article  Google Scholar 

  16. Norton EL, Szekely KLS, Dube JW, Bomben PG, Macdonald CLB (2008) Inorg Chem 47:1196–1203

    Article  CAS  Google Scholar 

  17. Dutton JL, Tindale JJ, Jennings MC, Ragogna PJ (2006) Chem Commun 2474–2476

    Google Scholar 

  18. Dutton JL, Sutrisno A, Schurko RW, Ragogna PJ (2008) Dalton Trans 3470–3477

    Google Scholar 

  19. Gushwa AF, Richards AF (2008) Eur J Inorg Chem 2008:728–736

    Article  Google Scholar 

  20. Dutton JL, Martin CD, Sgro MJ, Jones ND, Ragogna PJ (2009) Inorg Chem 48:3239–3247

    Article  CAS  Google Scholar 

  21. Dutton JL, Ragogna PJ (2009) Inorg Chem 48:1722–1790

    Article  CAS  Google Scholar 

  22. Kovacs A, Konings RJM (1997) J Mol Struct 410–411:407–410

    Article  Google Scholar 

  23. Fernholt L, Haaland A, Volden HV (1985) J Mol Struct 128:29–31

    Article  CAS  Google Scholar 

  24. Milne J, Lamoureux M (1990) Polyhedron 9:589–595

    Article  Google Scholar 

  25. Maaninen A, Chivers T, Parvez M, Pietikäinen J, Laitinen R (1999) Inorg Chem 38:4093–4097

    Article  CAS  Google Scholar 

  26. Del Bel Belluz P, Cordes AW, Kristof EM, Kristof PV, Liblong SW, Oakley RT (1989) J Am Chem Soc 111:9276–9278

    Article  Google Scholar 

  27. Milne J (1985) Polyhedron 4:65–68

    Article  CAS  Google Scholar 

  28. Konu J, Maaninen A, Paananen K, Ingman P, Laitinen RS, Chivers T, Valkonen J (2002) Inorg Chem 41:1430–1435

    Article  CAS  Google Scholar 

  29. Maaninen T, Chivers T, Laitinen R, Schatte G, Nissinen M (2000) Inorg Chem 39:5341–5347

    Article  CAS  Google Scholar 

  30. Konu J, Chivers T, Tuononen Inorg HM (2006) Chem 45:10678–10687

    CAS  Google Scholar 

  31. Zade SS, Panda S, Singh HB, Wolmershauser G (2005) Tet Lett 46:665–669

    Article  CAS  Google Scholar 

  32. Song L, Hu Q, Fan H, Tang M, Yang Z, Lu G (2002) Organometallics 21:2468–2472

    Article  CAS  Google Scholar 

  33. Song L, Fan H, Hu Q, Yang Z, Sun Y, Gong F (2003) Chem Eur J 9:170–180

    Article  CAS  Google Scholar 

  34. Amosova SV, Penzik MV, Albanov AI, Potapov VA (2009) J Organomet Chem 694:3369–3372

    Article  CAS  Google Scholar 

  35. Potapov VA, Kurktov EO, Albanov AI, Amosova SV (2008) Russ J Org Chem 44:1547–1548

    Article  CAS  Google Scholar 

  36. Braverman S, Jana R, Cherkinsky M, Gottlieb HE, Sprecher M (2007) Synlett 2007:2663–2666

    Article  Google Scholar 

  37. Potapov VA, Amosova SV, Belozerova OV, Albanov AI, Yarosh OG, Voronkov MG (2003) Chem Heterocycl Comp 39:549–550

    Article  CAS  Google Scholar 

  38. Patra A, Wijsboom YH, Zade SS, Li M, Sheynin Y, Leitus G, Bendikov M, (2008) J Am Chem Soc 130:6734–6736

    Article  CAS  Google Scholar 

  39. Wynne KJ, Pearson PS (1971) J Chem Soc Chem Commun 293–294

    Google Scholar 

  40. Wynne KJ, Pearson PS, Newton MG, Golen J (1972) Inorg Chem 11:1192–1196

    Article  CAS  Google Scholar 

  41. Godfrey SM, Jackson SL, McAuliffe CA, Pritchard RG (1998) Dalton Trans 4201–4204

    Google Scholar 

  42. Kuhn N, Kratz T, Henkel G (1994) Chem Ber 127:849–851

    Article  CAS  Google Scholar 

  43. Aragoni MC, Arca M, Blake AJ, Devillanova FA, du Mont WW, Garau A, Isaia F, Lippolis V, Verani G, Wilson C (2001) Angew Chem Int Ed 40:4229–4232

    Article  CAS  Google Scholar 

  44. Williams DJ, Wynne KJ (1976) Inorg Chem 15:1449–1451

    Article  CAS  Google Scholar 

  45. Konu J, Chivers T (2006) Dalton Trans 3941–3946

    Google Scholar 

  46. Reeske G, Cowley AH (2006) Chem Commun 4856–4858

    Google Scholar 

  47. Hrib CG, Jones PG, du Mont WW, Lippolis V, Devillanova FA (2006) Eur J Inorg Chem 1294–1302

    Google Scholar 

  48. Foss O, Maartmann-Moe K (1987) Acta Chem Scand A41:121–129

    Article  CAS  Google Scholar 

  49. Lee LM, Elder PJW, Cozzolino AF, Yang Q (2010) I Vargas Baca Main Group Chem 9:117–133

    CAS  Google Scholar 

  50. Foss O, Hauge S (1959) Acta Chem Scand 13:1252–1253

    Article  CAS  Google Scholar 

  51. Foss O, Hauge S (1961) Acta Chem Scand 15:1616–1617

    Article  CAS  Google Scholar 

  52. Dutton JL, Farrar GJ, Sgro MJ, Battista TL, Ragogna PJ (2009) Chem Eur J 15:10263–10271

    Article  CAS  Google Scholar 

  53. Roesky HW, Weber K, Seseke U, Pinkert W, Noltemeyer M, Clegg W, Sheldrick GM (1985) J Chem Soc Dalton Trans 565–571

    Google Scholar 

  54. Annan TA, Ozarowski A, Tian Z, Tuck DG (1992) J Chem Soc Dalton Trans 2931–2938

    Google Scholar 

  55. Konu J, Chivers T (2010) Chem Commun 46:1431–1433

    Article  CAS  Google Scholar 

  56. Cocksedge HE (1908) J Chem Soc 93:2175–2177

    Article  CAS  Google Scholar 

  57. Klapotke TM, Krumm B, Galvez-Ruiz JC, Noth H, Schwab I (2004) Eur J Inorg Chem 24:4764–4769

    Article  Google Scholar 

  58. Klapotke TM, Krumm B, Scheer M (2008) Inorg Chem 47:7025–7028

    Article  Google Scholar 

  59. Lentz D, Szwak M (2005) Angew Chem Int Ed 44:5079–5082

    Article  CAS  Google Scholar 

  60. Birdsall DJ, Novosad J, Slawin AMZ, Woollins JD (2000) J Chem Soc Dalton Trans 435–439

    Google Scholar 

  61. Sekar P, Ibers JA (2003) Inorg Chem 42:6294–6299

    Article  CAS  Google Scholar 

  62. Klapotke TM, Krumm B, Scheer M (2008) Inorg Chem 47:4712–4722

    Article  Google Scholar 

  63. Panda A, Mugesh G, Singh HB, Butcher RJ (1999) Organometallics 18:1986–1993

    Article  CAS  Google Scholar 

  64. Dutton JL, Tuononen HM, Ragogna PJ (2009) Angew Chem Int Ed 48:4409–4413

    Article  CAS  Google Scholar 

  65. Dutton JL, Battista TL, Sgro MJ, Ragogna PJ (2010) Chem Commun 46:1041–1043

    Article  CAS  Google Scholar 

  66. Dyker CA, Lavallo V, Donnadieu B, Bertrand G (2008) Angew Chem Int Ed 47:3206–3209

    Article  CAS  Google Scholar 

  67. Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695–8698

    Article  CAS  Google Scholar 

  68. Tonner R, Frenking G (2008) Chem Eur J 14:3273–3289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Ragogna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutton, J.L., Ragogna, P.J. (2011). Recent Developments in the Lewis Acidic Chemistry of Selenium and Tellurium Halides and Pseudo-Halides. In: Woollins, J., Laitinen, R. (eds) Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20699-3_8

Download citation

Publish with us

Policies and ethics