Skip to main content

Planning with Incomplete Information

(Invited Paper)

  • Conference paper
  • 395 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6572))

Abstract

Planning is concerned with the development of solvers for a wide range of models where actions must be selected for achieving goals. In these models, actions may be deterministic or not, and full or partial sensing may be available. In the last few years, significant progress has been made, resulting in algorithms that can produce plans effectively in a variety of settings. These developments have to do with new formulations, inference techniques, and transformations. In this paper, I review some of these developments, focusing on those pertaining to planning with incomplete information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newell, A., Simon, H.: GPS: a program that simulates human thought. In: Feigenbaum, E., Feldman, J. (eds.) Computers and Thought, pp. 279–293. McGraw Hill, New York (1963)

    Google Scholar 

  2. Bylander, T.: The computational complexity of STRIPS planning. Artificial Intelligence 69, 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proceedings of IJCAI 1995, pp. 1636–1642. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proc. AAAI, pp. 1194–1201 (1996)

    Google Scholar 

  5. McDermott, D.: Using regression-match graphs to control search in planning. Artificial Intelligence 109(1-2), 111–159 (1999)

    Article  MATH  Google Scholar 

  6. Bonet, B., Loerincs, G., Geffner, H.: A robust and fast action selection mechanism for planning. In: Proceedings of AAAI 1997, pp. 714–719. MIT Press, Cambridge (1997)

    Google Scholar 

  7. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  8. Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  9. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 1, 27–120 (1971)

    Article  MATH  Google Scholar 

  10. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: Proc. AIPS 1996 (1996)

    Google Scholar 

  11. Smith, D., Weld, D.: Conformant graphplan. In: Proceedings AAAI 1998, pp. 889–896. AAAI Press, Menlo Park (1998)

    Google Scholar 

  12. Cassandra, A., Kaelbling, L., Littman, M.L.: Acting optimally in partially observable stochastic domains. In: Proc. AAAI, pp. 1023–1028 (1994)

    Google Scholar 

  13. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  15. McDermott, D.: The 1998 AI Planning Systems Competition. Artificial Intelligence Magazine 21(2), 35–56 (2000)

    Google Scholar 

  16. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  17. Richter, S., Helmert, M., Westphal, M.: Landmarks revisited. In: Proc. AAAI, pp. 975–982 (2008)

    Google Scholar 

  18. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pearl, J.: Heuristics. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  20. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proc. ECAI 2008 (2008)

    Google Scholar 

  21. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search in belief space. In: Proc. of AIPS 2000, pp. 52–61. AAAI Press, Menlo Park (2000)

    Google Scholar 

  22. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incomplete information. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 308–318. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with implicit belief states. In: Proc. ICAPS, pp. 71–80 (2005)

    Google Scholar 

  24. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic domains under partial observability via symbolic model checking. In: Proc. IJCAI 2001 (2001)

    Google Scholar 

  25. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. Journal of AI Research 26, 35–99 (2006)

    MATH  Google Scholar 

  26. Palacios, H., Geffner, H.: From conformant into classical planning: Efficient translations that may be complete too. In: Proc. 17th Int. Conf. on Planning and Scheduling, ICAPS 2007 (2007)

    Google Scholar 

  27. Bonet, B., Givan, B.: Results of the conformant track of the 5th int. planning competition (2006), http://www.ldc.usb.ve/~bonet/ipc5/docs/results-conformant.pdf

  28. Buckland, M.: Programming Game AI by Example. Wordware Publishing Inc., Plano (2004)

    Google Scholar 

  29. Murphy, R.R.: An Introduction to AI Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  30. Mataric, M.J.: The Robotics Primer. MIT Press, Cambridge (2007)

    Google Scholar 

  31. Littman, M.L.: Memoryless policies: Theoretical limitations and practical results. In: Cliff, D. (ed.) From Animals to Animats 3. MIT Press, Cambridge (1994)

    Google Scholar 

  32. Meuleau, N., Peshkin, L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers for partially observable environments. In: Proc. UAI, pp. 427–436 (1999)

    Google Scholar 

  33. Poupart, P., Boutilier, C.: Bounded finite state controllers. In: Proc. NIPS, pp. 823–830 (2003)

    Google Scholar 

  34. Amato, C., Bernstein, D., Zilberstein, S.: Optimizing memory-bounded controllers for decentralized pomdps. In: Proc. UAI (2007)

    Google Scholar 

  35. Bonet, B., Palacios, H., Geffner, H.: Automatic derivation of memoryless policies and finite-state controllers using classical planners. In: Proc. Int. Conf. on Automated Planning and Scheduling, ICAPS 2009 (2009)

    Google Scholar 

  36. Chapman, D.: Penguins can make cake. AI magazine 10(4), 45–50 (1989)

    Google Scholar 

  37. Ballard, D., Hayhoe, M., Pook, P., Rao, R.: Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences 20(4), 723–742 (1997)

    Google Scholar 

  38. Geffner, H.: Inference and learning in planning (extended abstract). In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 1–12. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geffner, H. (2011). Planning with Incomplete Information. In: van der Meyden, R., Smaus, JG. (eds) Model Checking and Artificial Intelligence. MoChArt 2010. Lecture Notes in Computer Science(), vol 6572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20674-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20674-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20673-3

  • Online ISBN: 978-3-642-20674-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics