Skip to main content

Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VI Problems & Perspectives

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 4))

Abstract

We discuss several techniques for proving compactness of sequences of approximate solutions to discretized evolution PDEs. While the well-known Aubin-Simon kind functional-analytic techniques were recently generalized to the discrete setting by Gallouët and Latché [15], here we discuss direct techniques for estimating the time translates of approximate solutions in the space L 1. One important result is the Kruzhkov time compactness lemma. Further, we describe a specific technique that relies upon the order-preservation property. Motivation comes from studying convergence of finite volume discretizations for various classes of nonlinear degenerate parabolic equations. These and other applications are briefly described.

MSC2010: Primary: 65M12, 46B50, 35K65; Secondary: 46E39, 65M08

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Mat. Z., (1983), 183:311–341.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. Glasnik Matematički, (2000), 35:161–177.

    MathSciNet  MATH  Google Scholar 

  3. B. Andreianov, M. Bendahmane and F. Hubert. On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems. Preprint HAL, (2011), http://hal.archives-ouvertes.fr/hal-00567342

  4. B. Andreianov, M. Bendahmane, and K.H. Karlsen. Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyp. Diff. Eq., (2010), 7:1–67.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Andreianov, M. Bendahmane, K.H. Karlsen and S. Ouaro. Well-posedness results for triply nonlinear degenerate parabolic equations. J. Diff. Eq., (2009), 247(1):277–302.

    Google Scholar 

  6. B. Andreianov, M. Bendahmane, K.H. Karlsen and Ch. Pierre. Convergence of Discrete Duality Finite Volume schemes for the macroscopic bidomain model of the heart electric activity. Netw. Het. Media, (2011), to appear; available at http://hal.archives-ouvertes.fr/hal-00526047

  7. B. Andreianov, M. Bendahmane and R. Ruiz Baier. Analysis of a finite volume method to solve a cross-diffusion population system. Math. Models Meth. Appl. Sci., (2011), to appear.

    Google Scholar 

  8. B. Andreianov and P. Wittbold. Convergence of approximate solutions to an elliptic-parabolic equation without the structure condition. Preprint, (2011).

    Google Scholar 

  9. J.-P. Aubin. Un théorème de compacité. (French) C.R. Acad. Sc. Paris, (1963), 256:5042–5044.

    Google Scholar 

  10. Ph. Bénilan and P. Wittbold. Sur un problème parabolique-elliptique. (French) M2AN Math. Modelling and Num. Anal., (1999), 33(1):121–127.

    Google Scholar 

  11. J.A. Dubinskii. Weak convergence for elliptic and parabolic equations. (Russian) Math. USSR Sbornik, (1965), 67:609–642.

    Google Scholar 

  12. E. Emmrich and M. Thalhammer. Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation. J. Diff. Eq., (2011), to appear.

    Google Scholar 

  13. R. Eymard, T. Gallouët, and R. Herbin. Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII (2000). P. Ciarlet, J.-L. Lions, eds., North-Holland.

    Google Scholar 

  14. R. Eymard, T. Gallouët, R. Herbin and A. Michel. Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math., (2002), 92(1):41–82.

    Google Scholar 

  15. T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Comm. on Pure and Appl. Anal., (2011), to appear.

    Google Scholar 

  16. S.N. Kruzhkov. Results on the nature of the continuity of solutions of parabolic equations and some of their applications. Mat. Zametki (Math. Notes), (1969), 6(1):517-523.

    Google Scholar 

  17. J. Simon. Compact sets in the space L p(0, T; B). Ann. Mat. Pura ed Appl., (1987), 146:65–96.

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks E. Emmrich for discussions on the above techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Andreianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andreianov, B. (2011). Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds) Finite Volumes for Complex Applications VI Problems & Perspectives. Springer Proceedings in Mathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20671-9_3

Download citation

Publish with us

Policies and ethics