Skip to main content

Development of DDFV Methods for the Euler Equations

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VI Problems & Perspectives

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 4))

Abstract

We propose to extend some recent gradient reconstruction, the so–called DDFV approaches, to derive accurate finite volume schemes to approximate the weak solutions of the 2D Euler equations. A particular attention is paid on the limitation procedure to enforce the required robustness property. Some numerical experiments are performed to highlight the relevance of the suggested MUSCL–DDFV technique.

MSC2010: 65M08, 65N12, 76N99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numerical Methods for Partial Differential Equations 23(1), 145–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berthon, C.: Stability of the MUSCL schemes for the Euler equations. Comm. Math. Sci 3, 133–158 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

    MATH  Google Scholar 

  4. Buffard, T., Clain, S.: Monoslope and multislope MUSCL methods for unstructured meshes. Journal of Computational Physics 229(10), 3745–3776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coudière, Y., Manzini, G.: The Discrete Duality Finite Volume Method for Convection-diffusion Problems. SIAM Journal on Numerical Analysis 47(6), 4163–4192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. Mathematical Modelling and Numerical Analysis 39(6), 1203–1249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Godlewski, E., Raviart, P.A.: Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118. Springer-Verlag, New York (1996)

    Google Scholar 

  8. Harten, A., Lax, P., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM review pp. 35–61 (1983)

    Google Scholar 

  9. Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. Journal of computational Physics 160(2), 481–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hermeline, F.: Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Computer Methods in Applied Mechanics and Engineering 196(21-24), 2497–2526 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numerical Methods for Partial Differential Equations 18(5), 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. LeVeque, R.: Finite volume methods for hyperbolic problems. Cambridge Univ Pr (2002)

    Google Scholar 

  13. Toro, E.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Verlag (2009)

    Google Scholar 

  14. Toro, E., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock waves 4(1), 25–34 (1994)

    Article  MATH  Google Scholar 

  15. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32(1), 101–136 (1979)

    Google Scholar 

  16. Van Leer, B.: A historical oversight: Vladimir P. Kolgan and his high-resolution scheme. Journal of Computational Physics (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Berthon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berthon, C., Coudière, Y., Desveaux, V. (2011). Development of DDFV Methods for the Euler Equations. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds) Finite Volumes for Complex Applications VI Problems & Perspectives. Springer Proceedings in Mathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20671-9_13

Download citation

Publish with us

Policies and ethics