Skip to main content

Material Ablation

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy
  • 3361 Accesses

Abstract

The interaction of the pulsed laser beam with the material causes an ablation of mass from a liquid or solid measuring object. This mass is partially evaporated and transferred into the plasma state, where the species are excited to emit element-specific radiation used for LIBS. However, a part of the ablated mass leaves the measuring object as material vapor, particle, or liquid. At a later stage, this vapor condenses, forms particulates, or precipitates in the neighborhood of the interaction region. The particles ejected may be carried away by a gas flow or they propagate back to the surface of the measuring object forming a deposition. If a melt phase occurs – e.g., in case of the interaction of pulsed laser radiation with metals – a part of the mass is ejected as a liquid forming splashes or droplets which resolidify in the surrounding atmosphere or on the surface of the measuring object. Due to the complexity of processes, it is generally a difficult task to determine quantitatively the amount of ablated mass for single laser pulses or laser bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Lorenzen, C. Carlhoff, U. Hahn, M. Jogwich, Applications of laser-induced emission spectral analysis for industrial process and quality control. J. Anal. At. Spectrom. 7, 1029–1035 (1992)

    Article  Google Scholar 

  2. R. De Young, W. Situ, Elemental mass spectroscopy of remote surfaces from laser-induced plasmas. Appl. Spectrosc. 48, 1297–1306 (1994)

    Article  ADS  Google Scholar 

  3. E. Piepmeier, D. Osten, Atmospheric influences on Q-switched laser sampling and resulting plumes. Appl. Spectrosc. 25, 642–652 (1971)

    Article  ADS  Google Scholar 

  4. A. Felske, Über einige Erfahrungen bei der Makrospektralanalyse mit Laserlichtquellen. Spectrochim. Acta 27B, 1–21 (1972)

    ADS  Google Scholar 

  5. F. Leis, W. Sdorra, J. Ko, K. Niemax, Basic investigations for laser microanalysis: I. Optical emission spectrometry of laser-produced sample plumes. Mikrochim. Acta II 98, 185–199 (1989)

    Google Scholar 

  6. R. Jowitt, Direct analysis of liquid steel by laser, Proceedings of 38. Chemistry Conf., BSC Teesside Laboratories, 1985, 19–29

    Google Scholar 

  7. R. Sattmann, V. Sturm, R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J. Phys. D Appl. Phys. 28, 2181–2187 (1995)

    Article  ADS  Google Scholar 

  8. A. Semerok, C. Chaléard, V. Detalle, J. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci. 138–139, 311–314 (1999)

    Article  Google Scholar 

  9. V. Sturm, L. Peter, R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 54, 1275–1278 (2000)

    Article  ADS  Google Scholar 

  10. L. Peter, V. Sturm, R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Optics 42, 6199–6203 (2003)

    Article  ADS  Google Scholar 

  11. J. Vrenegor, R. Noll, V. Sturm, Investigation of matrix effects in LIBS plasmas of high-alloy steel for matrix and minor elements. Spectrochim. Acta B 60, 1083–1091 (2005)

    Article  ADS  Google Scholar 

  12. J. Aguilera, C. Aragón, F. Penalba, Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis. Appl. Surf. Sci. 127–129, 309–314 (1998)

    Article  Google Scholar 

  13. J. Aguilera, C. Aragón, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Appl. Phys. A 69, S475–S478 (1999)

    Article  ADS  Google Scholar 

  14. I. Horn, D. Günther, The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: implications for LA–ICP–MS. Appl. Surf. Sci. 207, 144–157 (2003)

    Article  ADS  Google Scholar 

  15. W. Sdorra, K. Niemax, Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes. Mikrochim. Acta 107, 319–327 (1992)

    Google Scholar 

  16. R. Russo, Laser ablation. Appl. Spectrosc. 49, 14A–28A (1995)

    Article  ADS  Google Scholar 

  17. M. Guillong, I. Horn, D. Günther, Description and characterization of a homogenized high power 266 nm Nd:YAG laser ablation systems for LA-ICP-MS. J. Anal. At. Spectrom. 17, 8–14 (2002)

    Article  Google Scholar 

  18. A. Löbe, J. Vrenegor, R. Fleige, V. Sturm, R. Noll, Laser-induced ablation of a steel sample in different ambient gases by use of collinear multiple laser pulses. Anal. Bioanal. Chem. 385, 326–332 (2006)

    Article  Google Scholar 

  19. C. Wegst, Stahlschlüssel 2001, Marbach, Stahlschlüssel Wegst GmbH, 19. Auflage

    Google Scholar 

  20. L. St-Onge, V. Detalle, M. Sabsabi, Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochim. Acta B 57, 121–135 (2002)

    Article  ADS  Google Scholar 

  21. R. Noll, R. Sattmann, V. Sturm, S. Winkelmann, Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples. J. Anal. At. Spectrom. 19, 419–428 (2004)

    Article  Google Scholar 

  22. J. Vadillo, J. Romero, C. Rodriguez, J. Laserna, Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure. Surf. Interface Anal. 26, 995–1000 (1998)

    Article  Google Scholar 

  23. Y. Iida, Effect of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim. Acta B 45, 1353–1367 (1990)

    Article  ADS  Google Scholar 

  24. S. Harilal, C. Bindhu, M. Tillack, F. Najmabadi, A. Gaeris, Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys. 93, 2380–2388 (2003)

    Article  ADS  Google Scholar 

  25. J. Heitz, J. Gruber, N. Arnold, D. Bäuerle, N. Ramaseder, W. Meyer, J. Hochörtler, In-situ analysis of steel under reduced ambient pressure by laser-induced break-down spectroscopy. Proc. SPIE 5120, 588–595 (2003)

    Article  ADS  Google Scholar 

  26. S. Lui, N. Cheung, Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects. Spectrochim. Acta B 58, 1613–1623 (2003)

    Article  ADS  Google Scholar 

  27. L. Peter, R. Noll, Material ablation and plasma state for single and collinear double pulses interacting with iron samples at ambient gas pressures below 1 bar. Appl. Phys. B 86, 159–167 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). Material Ablation. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics