Skip to main content

LIBS Instruments

  • Chapter
  • First Online:
  • 3384 Accesses

Abstract

This chapter describes LIBS instruments designed for different application fields, the requirements, setup, and performance. The topics chosen for the following sections refer mainly to industrial applications in R&D, inline process control, and quality inspection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Vrenegor, V. Sturm, D. Eilers, R. Noll, Neuartiges Laserverfahren für die schnelle Präparation und Multielement-Analyse metallischer Prozessproben, Final Report of the Joint Research Project ATLAS funded by the Federal Ministry of Economics and Technology of Germany within the InnoNet Programm, support code IN4051, 1.1.2004–31.3.2007, 74 p

    Google Scholar 

  2. R. Noll, V. Sturm, Ü. Aydin, D. Eilers, C. Gehlen, M. Höhne, A. Lamott, J. Makowe, J. Vrenegor, Laser-induced breakdown spectroscopy – from research to industry, new frontiers for process control. Spectrochim. Acta Part B 63, 1159–1166 (2008)

    Article  ADS  Google Scholar 

  3. H. Balzer, M. Höhne, V. Sturm, R. Noll, Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy. Spectrochim. Acta B 60, 1172–1178 (2005)

    Article  ADS  Google Scholar 

  4. G. Asimellis, A. Giannoudakos, M. Kompitsas, Rapid, automated measurement of layer thickness on steel coin blanks using LIBS depth-profiling. Appl. Optics 46, 935–942 (2007)

    Article  ADS  Google Scholar 

  5. D. Papazoglou, V. Papadakis, D. Anglos, In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures. J. Anal. At. Spectrom. 19, 483–488 (2004)

    Article  Google Scholar 

  6. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features. Appl. Spectrosc. 59, 853–860 (2005)

    Article  ADS  Google Scholar 

  7. Patent, DE 103 61 727, Verfahren und Vorrichtung zur Analyse fester Materialien mit der Laser-Emissionsspektrometrie, 21.7.2005

    Google Scholar 

  8. R. Noll, I. Mönch, O. Klein, A. Lamott, Concept and performance of inspection machines for industrial use based on LIBS. Spectrochim. Acta B 60, 1070–1075 (2005)

    Article  ADS  Google Scholar 

  9. K. Yamamoto, D. Cremers, M. Ferris, L. Foster, Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc. 50, 222–233 (1996)

    Article  ADS  Google Scholar 

  10. B. Castle, A. Knight, Battery powered laser-induced plasma spectrometer for elemental determinations. J. Anal. At. Spectrom. 13, 589–595 (1998)

    Article  Google Scholar 

  11. R. Harmon, F. De Lucia, A. Miziolek, K. McNesby, R. Walters, P. French, Laser-induced breakdown spectroscopy (LIBS) – an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis. Geochem. Explor. Environ. Anal. 5, 21–28 (2005)

    Article  Google Scholar 

  12. W. Pierce, S. Christian, Portable LIBS Instrumentation Can Identify Trace Levels of Environmental Pollutants, (Photonik International, Fellbach, 2006), 92–94

    Google Scholar 

  13. J. Goujon, O. Musset, A. Giakoumaki, V. Pinon, D. Anglos, E. Georgiou, A new compact laser source for portable LIBS applications. Proc. SPIE 6871, 68712Q (2008). doi:10.1117/12.777953

    Article  ADS  Google Scholar 

  14. A. Taffe, D. Schaurich, G. Wilsch, Development of a portable LIBS-device for quality assurance in concrete repair, in Concrete Repair, Rehabilitation and Retrofittinged. by G. Alexander (Taylor & Francis, London, 2009), pp. 547–549

    Google Scholar 

  15. M. Myers, J. Myers, J. Sarracino, C. Hardy, B. Guo, S. Christian, J. Myers, F. Roth, A. Myers, LIBS system with compact fiber spectrometer, head mounted spectra display and hand held eye-safe erbium glass laser gun, SPIE Photonics West (2010) Solid State Lasers XIX: Technology and Devices Conference LA101, # 7578–87, 20 p

    Google Scholar 

  16. StellarNet Inc., FL; Avantes, CO; Ocean Optics, FL; Applied Photonics, UK

    Google Scholar 

  17. F. Hilbk-Kortenbruck, M. Höhne, R. Noll, M. Freit, J. Joosten, H. Falk, Compact measuring system for laser emission spectrometry of coated and uncoated metals. Proc. 9. Anwendertreffen Röntgenfluoreszenz- und Funkenemissionsspektrometrie, 59–69 (2002)

    Google Scholar 

  18. F. Hoge, Recent advances in laser remote sensing. Proc. SPIE 3707, 2–9 (1999), Laser Radar Technology and Applications IV, ed. by G. Kamerman, C. Werner

    Google Scholar 

  19. A. Knight, N. Scherbarth, D. Cremers, M. Ferri, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc. 54, 331–340 (2000)

    Article  ADS  Google Scholar 

  20. S. Palanco, J. Baena, J. Laserna, Open-path laser-induced plasma spectroscopy for remote analytical measurements on solid surfaces. Spectrochim. Acta B 57, 591–599 (2002)

    Article  ADS  Google Scholar 

  21. R. Wiens, R. Arvidson, D. Cremers, M. Ferris, J. Blacic, F. Seelos, K. Deal, Combined remote mineralogical and elemental identification from rovers: field and laboratory tests using reflectance and laser-induced breakdown spectroscopy. J. Geophys. Res. 107, 8003 (2002). doi:10.1029/2000JE001439

    Article  Google Scholar 

  22. J. Vadillo, P. Garcia, S. Palanco, D. Romero, J. Baena, J. Laserna, Remote, real-time, on-line monitoring of high-temperature samples by noninvasive open-path laser plasma spectrometry. Anal. Bioanal. Chem. 375, 1144–1147 (2003)

    Google Scholar 

  23. P. García, J. Vadillo, J. Laserna, Real-time monitoring of high-temperature corrosion in stainless steels by open-path laser-induced plasma spectrometry. Appl. Spectrosc. 58, 1347–1352 (2004)

    Article  ADS  Google Scholar 

  24. S. Palanco, J. Laserna, Remote sensing instrument for solid samples based on open-path atomic emission spectrometry. Rev. Sci. Instr. 75, 2068–2074 (2004)

    Article  ADS  Google Scholar 

  25. S. Palanco, S. Conesa, J. Laserna, Analytical control of liquid steel in an induction melting furnace using a remote laser-induced plasma spectrometer. J. Anal. At. Spectrom. 19, 462–467 (2004)

    Article  Google Scholar 

  26. C. López-Moreno, S. Palanco, J. Laserna, Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest. J. Anal. At. Spectrom. 19, 1479–1484 (2004)

    Article  Google Scholar 

  27. R. Grönlund, M. Lundqvist, S. Svanberg, Remote imaging laser-induced breaddown spectroscopy and remote cultural heritage ablative cleaning. Opt. Lett. 30, 2882–2884 (2005)

    Article  ADS  Google Scholar 

  28. C. López-Moreno, S. Palanco, J. Laserna, Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot. Spectrochim. Acta B 60, 1034–1039 (2005)

    Article  ADS  Google Scholar 

  29. C. López-Moreno, S. Palanco, J. Laserna, F. DeLucia, J. Miziolek, J. Rose, R. Walters, A. Whitehouse, Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J. Anal. At. Spectrom. 21, 55–60 (2006)

    Article  Google Scholar 

  30. G. Mathy, B. Monfort, B. Vanderheyden, V. Tusset, Liquid steel process: advanced on line sensors under development at CRM. Metall. Anal. 30(Suppl. 1), 6–14 (2010)

    Google Scholar 

  31. R. Noll, C. Fricke-Begemann, Stand-off detection of surface contaminations with explosives residues using laser-spectroscopic methods, in Stand-off Detection of Suicide Bombers and Mobile Subjects, ed. by H. Schubert, A. Rimski-Korsakov (Springer, New York, 2006), pp. 89–99

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). LIBS Instruments. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics