Skip to main content

Bulk Analysis of Metallic Alloys

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy
  • 3332 Accesses

Abstract

This chapter describes LIBS investigations for a quantitative bulk analysis of metallic alloys such as steel in solid and liquid state, high-alloy steel, and aluminum. In case of aluminum, the focus is on LIBS analysis of moving Al specimens, which is of interest for inline identification of scrap pieces for material specific recycling (see also cf. Sect. 18.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aguilera, C. Aragon, J. Campos, Determination of carbon content in steel using laser-induced breakdown spectrometry. Appl. Spectrosc. 46, 1382–1387 (1992)

    Article  ADS  Google Scholar 

  2. R. Noll, R. Sattmann, V. Sturm, S. Lüngen, H.-J. von Wachtendonk, Schnelle Multielementanalyse in der Stahlschmelze mit laserinduzierter Emissionsspektrometrie. Stahl u. Eisen 117, 57–62 (1997)

    Google Scholar 

  3. T. Sugihara, Y. Funahashi, I. Fukui, T. Miyama, Rapid determination of ultra low carbon and nitrogen in steel with a modern simultaneous optical emission spectrometer, Progress in Anal. Chem. in the Steel and Metals Industry, Ed. Nauche, European Commission (1996), 229–235

    Google Scholar 

  4. V. Sturm, L. Peter, R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 54, 1275–1278 (2000)

    Article  ADS  Google Scholar 

  5. E. Runge, S. Bonfiglio, F. Bryan, Spectrochemical analysis of molten metal using a pulsed laser source. Spectrochim. Acta 22, 1678–1680 (1965)

    Article  Google Scholar 

  6. C. Aragon, J. Aguilera, J. Campus, Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser. Appl. Spectrosc. 47, 606–608 (1993)

    Article  ADS  Google Scholar 

  7. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 56, 685–693 (2001)

    Article  ADS  Google Scholar 

  8. L. Peter, V. Sturm, R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Opt. 42, 6199–6204 (2003)

    Article  ADS  Google Scholar 

  9. M. Hemmerlin, R. Meilland, H. Falk, P. Wintjens, L. Paulard, Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis – comparison with spark-optical emission spectrometry figures of merit. Spectrochim. Acta, Part B 56, 661–669 (2001)

    Google Scholar 

  10. S. Palanco, J.J. Laserna, Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities. J. Anal. At. Spectrom. 15, 1321–1327 (2000)

    Article  Google Scholar 

  11. L. Cabalin, D. Romero, C. Garcia, J. Baena, J. Laserna, Time-resolved laser-induced plasma spectrometry for determination of minor elements in steelmaking process samples. Anal. Bioanal. Chem. 372, 352–359 (2002)

    Article  Google Scholar 

  12. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, Laser-induced breakdown spectrometry – applications for production control and quality assurance in steel industry. Spectrochim. Acta, Part B 56, 637–649 (2001)

    Google Scholar 

  13. M. Khater, J. Costello, E. Kennedy, Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits. Appl. Spectrosc. 56, 970–984 (2002)

    Article  ADS  Google Scholar 

  14. V. Sturm, J. Vrenegor, R. Noll, M. Hemmerlin, Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 19, 451–456 (2004)

    Article  Google Scholar 

  15. IRSID, Voie Romaine, 57283 Maizières les Metz Cedex, France

    Google Scholar 

  16. H. Richter, H. Rzepczyk, D. Tembergen, Prozeßsteuerung sekundärmetallurgischer Verfahren. Stahl und Eisen 114, 110–113 (1994)

    Google Scholar 

  17. H. Richter, H. Rzepczyk, D. Tembergen, Qualitätsbezogene Prozeßsteuerung in der Sekundärmetallurgie eines Oxygenstahlwerkes. Stahl und Eisen 115, 83–87 (1995)

    Google Scholar 

  18. C. Carlhoff, Laserinduzierte Emissionsspektroskopie für die Direktanalyse von flüssigem Stahl im Konverter. Laser und Optoelektronik 23, 50–52 (1991)

    Google Scholar 

  19. R. Noll, V. Sturm, L. Peter, I. Whiteside, Analysis using lasers, in Proc. of the 49th Chemists’ Conference, 1997, ed. by R. Jowitt (Research and Development Department British Steel, Middlesbrough) pp. 22–27

    Google Scholar 

  20. R. Sattmann, V. Sturm, R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J. Phys. D: Appl. Phys. 28, 2181–2187 (1995)

    Article  ADS  Google Scholar 

  21. R. Noll, V. Sturm, L. Peter, R. Hakala, J. Viirret, H.W. Gudenau, K. Mavrommatis L. Ernenputsch, Sensitivity-enhanced laser analysis (SELA) of steel melts for a fast multi-element online analysis during ladle processing in secondary metallurgy, EUR 19411 - Analytical techniques for processes, products and the environment, Technical steel research series; European Commission (Office for Official Publications of the European Communities), Luxembourg, 2001

    Google Scholar 

  22. V. Rai, F. Yueh, J. Singh, Study of laser-induced breakdown emission from liquid under double pulse excitation. Appl. Optics 42, 2094–2101 (2003)

    Article  ADS  Google Scholar 

  23. DIN 32 645, Chemische Analytik – Nachweis-, Erfassungs- und Bestimmungsgrenze – Ermittlung unter Wiederholbedingungen; Begriffe, Verfahren, Auswertung (Beuth Verlag, Berlin, 2006)

    Google Scholar 

  24. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Temporal and spatial evolution of a laser-induced plasma from a steel target. Appl. Spectrosc. 57, 715–721 (2003)

    Article  ADS  Google Scholar 

  25. C. Lopez-Moreno, S. Palanco, J. Laserna, Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest. J. Anal. At. Spectrom. 19, 1479–1484 (2004)

    Article  Google Scholar 

  26. S. Palanco, L.M. Cabalin, D. Romero, J. Laserna, Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures. J. Anal. At. Spectrom. 14, 1883–1887 (1999)

    Article  Google Scholar 

  27. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectrometry. Spectrochim. Acta Part B 56, 671–683 (2001)

    Article  ADS  Google Scholar 

  28. J. Vrenegor, R. Noll, V. Sturm, Investigation of matrix effects in LIBS plasmas of high-alloy steel for matrix and minor elements. Spectrochim. Acta B 60, 1083–1091 (2005)

    Article  ADS  Google Scholar 

  29. K. Slickers, Automatic Atomic Emission Spectroscopy, Brühlsche Universitätsdruckerei, Giessen, 2nd edn. (1992)

    Google Scholar 

  30. R. Kurucz, B. Bell, Atomic Line Data. Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, Cambridge,, 1995)

    Google Scholar 

  31. J. Aguilera, C. Aragon, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Appl. Phys. A 69 [Suppl.], S475–S478 (1999)

    Google Scholar 

  32. K. Krone, Aluminiumrecycling: Vom Vorstoff bis zur fertigen Legierung, (Aluminium-Verlag, Düsseldorf, 2000)

    Google Scholar 

  33. Metallstatistik 1957–1966, Ed. Metallgesellschaft AG, vol. 54, Frankfurt am Main, 1967

    Google Scholar 

  34. Metallstatistik 1967–1977, Ed. Metallgesellschaft AG, vol. 65, Frankfurt am Main, 1978

    Google Scholar 

  35. Metallstatistik 1978–1988, Ed. Metallgesellschaft AG, vol. 76, Frankfurt am Main, 1989

    Google Scholar 

  36. Metallstatistik, Metal Statistics 1989–1999, ed. by World Bureau of Metal Statistics, vol. 87, Ware, England (2000)

    Google Scholar 

  37. Metallstatistik, Metal Statistics 1993–2003, ed. by World Bureau of Metal Statistics, vol. 91, Ware, England (2004)

    Google Scholar 

  38. Aluminium-Taschenbuch, ed. by Aluminium-Zentrale (Aluminium-Verlag, Düsseldorf, 1983)

    Google Scholar 

  39. C. Schmitz, Handbook of Aluminium Recycling – Fundamentals, Mechanical Preparation, Metallurgical Processing, Plant Design (Vulkan-Verlag, Essen, 2006)

    Google Scholar 

  40. K. Krone, J. Krüger, H. Orbon, H. Sommer, H. Vest, Ökologische Aspekte der Primär- und Sekundärerzeugung in der Bundesrepublik Deutschland. Metall 44, 559–568 (1990)

    Google Scholar 

  41. G. Rombach, B. Friedrich, Aluminum recycling in Germany. Light Metal Age 59, 66–75 (2001)

    Google Scholar 

  42. Ü. Aydin, R. Noll, J. Makowe, Automatic sorting of aluminium alloys by fast LIBS identification, in 7th Int. Workshop Progress in Analytica Chemistry in the Steel and Metal Industries, ed. by J. Angeli (Glückauf GmbH, Essen, 2006) pp. 309–314

    Google Scholar 

  43. M. Sabsabi, P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49, 499–507 (1995)

    Article  ADS  Google Scholar 

  44. G. Rieger, M. Taschuk, Y. Tsui, R. Fedosejevs, Laser-induced breakdown spectroscopy for microanalysis using submillijoule UV laser pulses. Appl. Spectrosc. 56, 689–698 (2002)

    Article  ADS  Google Scholar 

  45. M. Ismail, H. Imam, A. Elhassan, W. Youniss, M. Harith, LIBS limit of detection and plasma parameters of some elements in two different matrices. J. Anal. At. Spectrosc. 19, 489–494 (2004)

    Article  Google Scholar 

  46. M. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, M. Harith, Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations. Anal. Bioanal. Chem. 385, 316–325 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). Bulk Analysis of Metallic Alloys. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics