Advertisement

Efficient Routing in Road Networks with Turn Costs

  • Robert Geisberger
  • Christian Vetter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

We present an efficient algorithm for shortest path computation in road networks with turn costs. Each junction is modeled as a node, and each road segment as an edge in a weighted graph. Turn costs are stored in tables that are assigned to nodes. By reusing turn cost tables for identical junctions, we improve the space efficiency. Preprocessing based on an augmented node contraction allows fast shortest path queries. Compared to an edge-based graph, we reduce preprocessing time by a factor of 3.4 and space by a factor of 2.4 without change in query time.

Keywords

route planning banned turn turn cost algorithm engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Caldwell, T.: On Finding Minimum Routes in a Network With Turn Penalties. Communications of the ACM 4(2) (1961)Google Scholar
  3. 3.
    Winter, S.: Modeling Costs of Turns in Route Planning. GeoInformatica 6(4), 345–361 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics 15(2.3), 1–31 (2010); Special Section devoted to WEA 2008MathSciNetzbMATHGoogle Scholar
  8. 8.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 231–242. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Volker, L.: Route Planning in Road Networks with Turn Costs, Student Research Project (2008), http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
  10. 10.
    Vetter, C.: Parallel Time-Dependent Contraction Hierarchies, Student Research Project (2009), http://algo2.iti.kit.edu/download/vetter_sa.pdf.
  11. 11.
    Vetter, C.: MoNav (2011), http://code.google.com/p/monav/
  12. 12.
    Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s thesis, Karlsruhe Institute of Technology (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert Geisberger
    • 1
  • Christian Vetter
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations