Advertisement

A Parallel Multi-start Search Algorithm for Dynamic Traveling Salesman Problem

  • Weiqi Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

This paper introduces a multi-start search approach to dynamic traveling salesman problem (DTSP). Our experimental problem is stochastic and dynamic. Our search algorithm is dynamic because it explicitly incorporates the interaction of change and search over time. The result of our experiment demonstrates the effectiveness and efficiency of the algorithm. When we use a matrix to construct the solution attractor from the set of local optima generated by the multi-start search, the attractor-based search can provide even better result.

Keywords

dynamic TSP network and graphs parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corne, D.W., Oates, M.J., Smith, G.D.: Telecommunications Optimization: Heuristic and Adaptive Techniques. John Wiley & Sons, Chichester (2000)Google Scholar
  2. 2.
    Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and Dynamic Networks and Routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 141–296. Elsevier, Amsterdam (1995)Google Scholar
  3. 3.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP: Ants Caught in a Traffic Jam. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 88–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Guntsch, M., Middendorf, M.: Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 213–222. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Morrison, R.W.: Designing Evolutionary for Dynamic Environments. Springer, Berlin (2001)zbMATHGoogle Scholar
  7. 7.
    Tfaili, W., Siarry, P.: A New Charged ant Colony Algorithm for Continuous Dynamic Optimization. Applied Mathematics and Computation 197, 604–613 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag, Berlin (2003)zbMATHGoogle Scholar
  9. 9.
    Yang, S., Ong, Y.-S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Younes, A., Areibi, S., Calamai, P., Basir, O.: Adapting Genetic Algorithms for Combinatorial Optimization Problems in Dynamic Environments. In: Kosinski, W. (ed.) Advances in Evolutionary Algorithms, InTech, Croatia, pp. 207–230 (2008)Google Scholar
  11. 11.
    Morrison, R.W., De Jong, K.A.: Triggered Hypermutation Revisited. In: Proceedings of 2000 Congress on Evolutionary Computation, pp. 1025–1032 (2000)Google Scholar
  12. 12.
    Tinos, R., Yang, S.: A Self-organizing Random Immigrants Genetic Algorithm for Dynamic Optimization Problems. Genetic Programming and Evolvable Machines 8(3), 255–286 (2007)CrossRefGoogle Scholar
  13. 13.
    Wineberg, M., Oppacher, F.: Enhancing the GA’s Ability to Cope with Dynamic Environments. In: Proceedings of Genetic and Evolutionary Computation Conference, GEC 2005, pp. 3–10 (2000)Google Scholar
  14. 14.
    Yang, S., Yao, X.: Population-based Incremental Learning with Associative Memory for Dynamic Environments. IEEE Transactions on Evolutionary Computation 12(5), 542–561 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Simões, A., Costa, E.: An Immune System-based Genetic Algorithm to Deal with Dynamic Environments: Diversity and Memory. In: Proceedings of International Conference on Neural Networks and Genetic Algorithms, pp. 168–174 (2003)Google Scholar
  16. 16.
    Yang, S.: Genetic Algorithms with Memory and Elitism Based Immigrants in Dynamic Environments. Evolutionary Computation 16(3), 385–416 (2008)CrossRefGoogle Scholar
  17. 17.
    Branke, J., Kaussler, T., Schmidt, C., Schmeck, H.: A Multi-population Approach to Dynamic Optimization Problems. In: Proceedings of 4th International Conference on Adaptive Computing in Design and Manufacturing, pp. 299–308. Springer, Berlin (2000)Google Scholar
  18. 18.
    Ursem, R.K.: Multinational GA: Optimization Techniques in Dynamic Environments. In: Proceedings of the 2nd Genetic and Evolutionary Computation Conferences, pp. 19–26. Morgan Kaufman, San Francisco (2000)Google Scholar
  19. 19.
    Gambardella, L.-M., Taillard, E.D., Dorigo, M.: Ant Colonies for the Quadratic Assignment Problem. Journal of the Operational Research Society 50, 167–176 (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Stützle, T., Hoos, H.: Improvements on the Ant System: Introducing MAX(MIN) Ant System. In: Proceedings of the International Conference on Artificial Neutral Networks and Genetic Algorithms, pp. 245–249. Springer, Berlin (1997)Google Scholar
  21. 21.
    Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Optimization Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Burkard, R.E., Deineko, V.G., Dal, R.V.: Well-solvable Special Cases of the Travelling Salesman Problem: a survey. SIAM Rev. 40(3), 496–546 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, C., Yang, M., Kang, L.: A New Approach to Solving Dynamic Travelling Salesman Problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Psaraftis, H.N.: Dynamic vehicle routing. In: Golen, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 223–248. Elsevier, Amsterdam (1988)Google Scholar
  25. 25.
    Kang, L., Zhou, A., McKay, B., Li, Y., Kang, Z.: Benchmarking Algorithms for Dynamic Travelling Salesman Problem. In: Congress on Evolutionary Computation CEC 2004, pp. 1286–1292 (2004)Google Scholar
  26. 26.
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  27. 27.
    Martí, R., Moreno-Vega, J.M., Duarte, A.: Advanced Multi-start Methods. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 265–281. Springer, Berlin (2010)CrossRefGoogle Scholar
  28. 28.
    Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multi-start Technique for Combinatorial Global Optimization. Oper. Res. Lett. 16, 101–113 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, W.: Seeking Global Edges for Travelling Salesman Problem in Multi-start Search. J. Global Optimization. Online First Articles (2011)Google Scholar
  31. 31.
    Glover, F.: Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman Problems. Discrete Applied Math. 65, 223–253 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Laguna, M., Martí, R.: GRASP and Path Relinking for a 2-player Straight Line Crossing Minimization. INFORMS J. Comput. 11(1), 44–52 (1999)CrossRefzbMATHGoogle Scholar
  34. 34.
    Resende, M.G.C., Mart, R., Gallego, M., Duarte, A.: GRASP and Path Relinking for the Max-min Diversity Problem. Comput. And Oper. Res. 37(3), 498–508 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Weiqi Li
    • 1
  1. 1.University of Michigan - FlintFlintU.S.A.

Personalised recommendations