Advertisement

An Empirical Evaluation of Extendible Arrays

  • Stelios Joannou
  • Rajeev Raman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

We study the performance of several alternatives for implementing extendible arrays, which allow random access to elements stored in them, whilst allowing the arrays to be grown and shrunk. The study not only looks at the basic operations of grow/shrink and accessing data, but also the effects of memory fragmentation on performance.

Keywords

Block Size Memory Usage Data Block Physical Memory Virtual Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM 54(3), 13 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case operations with a succinct representation. In: FOCS, pp. 787–796. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  3. 3.
    Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with an improved buddy system. Acta Inf. 41(4-5), 273–291 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.: Resizable arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Farzan, A., Munro, J.I.: Dynamic succinct ordered trees. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 439–450. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Hagerup, T., Raman, R.: An efficient quasidictionary. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 1–18. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Purdom Jr., P.W., Stigler, S.M.: Statistical properties of the buddy system. J. ACM 17(4), 683–697 (1970)CrossRefzbMATHGoogle Scholar
  8. 8.
    Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. I. Addison-Wesley, Reading (1968)zbMATHGoogle Scholar
  9. 9.
    Lee, S., Park, K.: Dynamic rank/select structures with applications to run-length encoded texts. Theor. Comput. Sci. 410(43), 4402–4413 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Luby, M., Naor, J., Orda, A.: Tight bounds for dynamic storage allocation. In: SODA, pp. 724–732 (1994)Google Scholar
  11. 11.
    Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly. In: SODA, pp. 529–536 (2001)Google Scholar
  12. 12.
    Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 357–368. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Robson, J.M.: An estimate of the store size necessary for dynamic storage allocation. J. ACM 18(2), 416–423 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Robson, J.M.: Bounds for some functions concerning dynamic storage allocation. J. ACM 21(3), 491–499 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 7th edn. John Wiley & Sons, Inc., Chichester (2004)zbMATHGoogle Scholar
  17. 17.
    Tarjan, R.E.: Data Structures and Network Algorithms. SIAM, Philadelphia (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stelios Joannou
    • 1
  • Rajeev Raman
    • 1
  1. 1.Department of Computer ScienceUniversity of LeicesterLeicesterUK

Personalised recommendations