Advertisement

Explanations for the Cumulative Constraint: An Experimental Study

  • Stefan Heinz
  • Jens Schulz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

In cumulative scheduling, conflict analysis seems to be one of the key ingredients to solve such problems efficiently. Thereby, the computational complexity of explanation algorithms plays an important role. Even more when we are faced with a backtracking system where explanations need to be constructed on the fly.

In this paper we present extensive computational results to analyze the impact of explanation algorithms for the cumulative constraint in a backward checking system. The considered explanation algorithms differ in their quality and computational complexity. We present results for the domain propagation algorithms time-tabling, edge-finding, and energetic reasoning.

Keywords

Schedule Problem Project Schedule Project Schedule Problem Check System Explanation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1), 4–20 (2007); special issue: Mixed Integer ProgrammingMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Achterberg, T.: SCIP: Solving Constraint Integer Programs. Math. Programming Computation 1(1), 1–41 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling 17(7), 57–73 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications. ISTE (2007)Google Scholar
  5. 5.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling: applying constraint programming to scheduling problems. In: International Series in Operations Research & Management Science, vol. 39. Kluwer Academic Publishers, Boston (2001)Google Scholar
  6. 6.
    Baptiste, P., Pape, C.L.: Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems. Constraints 5(1/2), 119–139 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint integer programming approach for resource-constrained project scheduling. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klein, R., Scholl, A.: Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling. European Journal of Operational Research 112(2), 322–346 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48, 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manage. Sci. 49(3), 330–350 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    PSPLib: Project Scheduling Problem LIBrary, http://129.187.106.231/psplib/ (last accessed 2011)
  13. 13.
    Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Constraints, 1–33 (2010)Google Scholar
  14. 14.
    Vilím, P.: Max energy filtering algorithm for discrete cumulative resources. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 294–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefan Heinz
    • 1
  • Jens Schulz
    • 2
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations