Advertisement

A Branch-Cut-and-Price Algorithm for the Capacitated Arc Routing Problem

  • Rafael Martinelli
  • Diego Pecin
  • Marcus Poggi
  • Humberto Longo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

Arc routing problems are among the most challenging combinatorial optimization problems. We tackle the Capacitated Arc Routing Problem where demands are spread over a subset of the edges of a given graph, called the required edge set. Costs for traversing edges, demands on the required ones and the capacity of the available identical vehicles at a vertex depot are given. Routes that collect all the demands at minimum cost are sought. In this work, we devise a Branch-Cut-and-Price algorithm for the Capacitated Arc Routing problem using a column generation which generates non-elementary routes (usually called q-routes) and exact separation of odd edge cutset and capacity cuts. Computational experiments report one new optimal and twelve new lower bounds.

Keywords

Arc Routing Branch-Cut-and-Price Integer Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahr, D.: Contributions to Multiple Postmen Problems. Ph.D. dissertation, Department of Computer Science, Heidelberg University (2004)Google Scholar
  2. 2.
    Amberg, A., Voß, S.: A Hierarchical Relaxations Lower Bound for the Capacitated Arc Routing Problem. In: Proceedings of the 35th Anual Hawaii International Conference on System Sciences (2002)Google Scholar
  3. 3.
    Assad, A.A., Pearn, W.L., Golden, B.L.: The Capacitated Chinese Postman Problem: Lower Bounds and Solvable Cases. American Journal of Mathematical Management Sciences 7(1,2), 63–88 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belenguer, J.M., Benavent, E.: Polyhedral Results on the Capacitated Arc Routing Problem, Departamento de Estadística e Investigación Operativa, Universitat de València, Tech. Rep. TR 1-92 (1992)Google Scholar
  5. 5.
    Belenguer, J.M., Benavent, E.: A Cutting Plane Algorithm for the Capacitated Arc Routing Problem. Computers & Operations Research 30, 705–728 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beullens, P., Muyldermans, L., Cattrysse, D., Oudheusden, D.V.: A Guided Local Search Heuristic for the Capacitated Arc Routing Problem. European Journal of Operational Research 147(3), 629–643 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brandão, J., Eglese, R.: A Deterministic Tabu Search Algorithm for the Capacitated Arc Routing Problem. Computers & Operations Research 35, 1112–1126 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chapleau, L., Ferland, J.A., Lapalme, G., Rousseau, J.M.: A Parallel Insert Method for the Capacitated Arc Routing Problem. Operations Research Letters 3(2), 95–99 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Christofides, N., Mingozzi, A., Toth, P.: Exact Algorithms for the Vehicle Routing Problem, Based on Spanning Tree and Shortest Path Relaxations. Mathematical Programming 20, 255–282 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Doerner, K., Hartl, R., Maniezzo, V., Reimann, M.: An Ant System Metaheuristic for the Capacitated Arc Routing Problem. In: Proceedings of the 5th Metaheuristics International Conference, Tokyo, Japan (2003)Google Scholar
  11. 11.
    Dror, M.: Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW. Operations Research 42(5), 977–978 (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eglese, R.W.: Routeing Winter Gritting Vehicles. Discrete Applied Mathematics 48(3), 231–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fu, H., Mei, Y., Tang, K., Zhu, Y.: Memetic algorithm with heuristic candidate list strategy for capacitated arc routing problem. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)Google Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  15. 15.
    Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational Experiments with Algorithms for a Class of Routing Problems. Computers and Operations Research 10(1), 47–59 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Golden, B.L., Wong, R.T.: Capacitated Arc Routing Problems. Networks 11, 305–315 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gómez-Cabrero, D., Belenguer, J.M., Benavent, E.: Cutting Plane and Column Generation for the Capacitated Arc Routing Problem. In: ORP3, Valencia (2005)Google Scholar
  18. 18.
    Hertz, A., Laporte, G., Mittaz, M.: A Tabu Search Heuristic for the Capacitated Arc Routing Problem. Operations Research 48(1), 129–135 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hirabayashi, R., Nishida, N., Saruwatari, Y.: Node Dublication Lower Bounds for the Capacitated Arc Routing Problems. Journal of the Operations Research Society of Japan 35(2), 119–133 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hirabayashi, R., Nishida, N., Saruwatari, Y.: Tour Construction Algorithm for the Capacitated Arc Routing Problem. AsiaPacific Journal of Operational Research 9, 155–175 (1992)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Irnich, S., Villeneuve, D.: The Shortest-Path Problem with Resource Constraints and k-Cycle Elimination for k ≥ 3. INFORMS Journal on Computing 18(3), 391–406 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lacomme, P., Prins, C., Ramdane-Chérif, W.: A genetic algorithm for the capacitated arc routing problem and its extensions. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 473–483. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Lacomme, P., Prins, C., Ramdane-Chérif, W.: Competitive memetic algorithms for arc routing problems. Annals of Operations Research 131, 159–185 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Laganá, D., Ghiani, G., Musmanno, R., Laporte, G.: A Branch-and-Cut Algorithm for the Undirected Capacitated Arc Routing Problem. The Journal of the Operations Research Society of America, 1–21 (2007)Google Scholar
  25. 25.
    Letchford, A., Oukil, A.: Exploiting Sparsity in Pricing Routines for the Capacitated Arc Routing Problem. Computers & Operations Research 36, 2320–2327 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Letchford, A.N.: Polyhedral Results for some Constrained Arc-Routing Problems, Ph.D. dissertation, Lancaster University (1996)Google Scholar
  27. 27.
    Li, L.Y.O.: Vehicle Routeing for Winter Gritting, Ph.D. dissertation, Department of Management Science, Lancaster University (1992)Google Scholar
  28. 28.
    Li, L.Y.O., Eglese, R.W.: An Interactive Algorithm for Vehicle Routeing for Winter-Gritting. Journal of the Operational Research Society 47, 217–228 (1996)CrossRefGoogle Scholar
  29. 29.
    Longo, H., Poggi de Aragão, M., Uchoa, E.: Solving Capacitated Arc Routing Problems Using a Transformation to the CVRP. Computers & Operations Research 33, 1823–1827 (2006)CrossRefzbMATHGoogle Scholar
  30. 30.
    Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Mathematics of Operations Research 7, 67–80 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Pearn, W.L.: New Lower Bounds for the Capacitated Arc Routing Problem. Networks 18, 181–191 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Pearn, W.L.: Approximate Solutions for the Capacitated Arc Routing Problem. Computers & Operations Research 16(6), 589–600 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pearn, W.L.: Augment-Insert Algorithms for the Capacitated Arc Routing Problem. Computers & Operations Research 18(2), 189–198 (1991)CrossRefzbMATHGoogle Scholar
  34. 34.
    Santos, L., Coutinho-Rodrigues, J., Current, J.: An Improved Ant Colony Optimization Based Algorithm for the Capacitated Arc Routing Problem. Transportation Research Part B 44, 246–266 (2010)CrossRefGoogle Scholar
  35. 35.
    Wøhlk, S.: Contributions to Arc Routing, Ph.D. dissertation, Faculty of Social Sciences, University of Southern Denmark (2005)Google Scholar
  36. 36.
    Wøhlk, S.: New Lower Bound for the Capacitated Arc Routing Problem. Computers & Operations Research 33(12), 3458–3472 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rafael Martinelli
    • 1
  • Diego Pecin
    • 1
  • Marcus Poggi
    • 1
  • Humberto Longo
    • 2
  1. 1.PUC-Rio – Departamento de InformáticaRio de JaneiroBrazil
  2. 2.UFG – Instituto de InformáticaGoiâniaBrazil

Personalised recommendations