Experimental Evaluation of Algorithms for the Orthogonal Milling Problem with Turn Costs

  • Igor R. de Assis
  • Cid C. de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)


This paper studies the Orthogonal Milling with Turn Costs. An exact algorithm is proposed based on an Integer Programming formulation of the problem. To our knowledge, this is the first exact algorithm ever proposed for the problem. Besides, a simple heuristic is also presented and an unprecedented experimentation involving these two algorithms and an existing approximation algorithm is carried out. We report and analyze the results obtained in these tests. Our benchmark instances are made public to allow for future comparisons.


orthogonal milling with turn costs exact algorithms approximation algorithms heuristics experimental evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, E.M., Bender, M.A., Demaine, E., Fekete, S.P., Mitchell, J.S.B., Sethia, S.: Optimal covering tours with turn costs. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 138–147 (2001)Google Scholar
  2. 2.
    Demaine, E.D., Mitchell, J.S.B., O’Rourke, J.: The open problems project. (page visited in January, 2011)
  3. 3.
    Arkin, E., Bender, M., Demaine, E., Fekete, S., Mitchell, J., Sethia, S.: Optimal covering tours with turn costs. SIAM Journal on Computing 35(3), 531–566 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clossey, J., Laporte, G., Soriano, P.: Solving arc routing problems with turn penalties. Journal of the Operational Research Society 52, 433–439 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Benavent, E., Soler, D.: The directed rural postman problem with turn penalties. Transportation Science 30(4), 408–418 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Arieh, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP. Operations Research Letters 31(5), 357–365 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier Science, New York (1976)CrossRefzbMATHGoogle Scholar
  9. 9.
    Resende, M.G., Ribeiro, C.C.: Greedy randomized adaptive search procedures: Advances, hybridizations, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 283–319. Springer, US (2010)CrossRefGoogle Scholar
  10. 10.
    Kolmogorov, V.: Blossom V: A new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1(1), 43–67 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Igor R. de Assis
    • 1
  • Cid C. de Souza
    • 1
  1. 1.Institute of ComputingUniversity of Campinas (UNICAMP)Brazil

Personalised recommendations