Advertisement

Designing Difficult Office Space Allocation Problem Instances with Mathematical Programming

  • Özgür Ülker
  • Dario Landa-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

Office space allocation (OSA) refers to the assignment of room space to a set of entities (people, machines, roles, etc.), with the goal of optimising the space utilisation while satisfying a set of additional constraints. In this paper, a mathematical programming approach is developed to model and generate test instances for this difficult and important combinatorial optimisation problem. Systematic experimentation is then carried out to study the difficulty of the generated test instances when the parameters for adjusting space misuse (overuse and underuse) and constraint violations are subject to variation. The results show that the difficulty of solving OSA problem instances can be greatly affected by the value of these parameters.

Keywords

Office Space Allocation Problem Integer Programming Mathematical Modelling Data Instance Generation Proof of Optimality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamin, C., Ehie, I., Omurtag, Y.: Planning facilities at the university of missouri-rolla. Interfaces 22(4) (1992)Google Scholar
  2. 2.
    Burke, E.K., Cowling, P., Landa Silva, J.D.: Hybrid population-based metaheuristic approaches for the space allocation problem. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 232–239 (2001)Google Scholar
  3. 3.
    Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to automate the space allocation process in UK universities. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 254–273. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Cowling, P., Landa Silva, J.D., Petrovic, S.: Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 1252–1259 (2001)Google Scholar
  5. 5.
    Burke, E.K., Varley, D.B.: Space allocation: An analysis of higher education requirements. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 20–33. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cattrysse, D.G., Van Wassenhove, L.N.: A survey of algorithms for the generalized assignment problem. European Journal of Operational Research 60(3), 260–272 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  8. 8.
    Giannikos, J., El-Darzi, E., Lees, P.: An integer goal programming model to allocate offices to staff in an academic instituition. Journal of the Operational Research Society 46(6), 713–720 (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  10. 10.
    Gurobi Optimization: Gurobi (2010), http://www.gurobi.com
  11. 11.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. on Computing 19(4), 575–587 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Landa-Silva, J.D.: Metaheuristics and Multiobjective Approaches for Space Allocation. Ph.D. thesis, School of Computer Science and Information Technology, University of Nottingham (2003)Google Scholar
  14. 14.
    Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierarchized organizations. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 143–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc., New York (1990)zbMATHGoogle Scholar
  16. 16.
    Pereira, R., Cummiskey, K., Kincaid, R.: Office space allocation optimization. In: IEEE Systems and Information Engineering Design Symposium (SIEDS 2010), pp. 112–117 (2010)Google Scholar
  17. 17.
    Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space planning for academic facilities. Managament Science 25(9), 895–906 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ülker, O., Landa-Silva, D.: A 0/1 integer programming model for the office space allocation problem. Electronic Notes in Discrete Mathematics 36, 575–582 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Özgür Ülker
    • 1
  • Dario Landa-Silva
    • 1
  1. 1.Automated Scheduling, Optimisation and Planning (ASAP) Research Group School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations