A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks

  • Ittai Abraham
  • Daniel Delling
  • Andrew V. Goldberg
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)


Abraham et al. [SODA 2010] have recently presented a theoretical analysis of several practical point-to-point shortest path algorithms based on modeling road networks as graphs with low highway dimension. They also analyze a labeling algorithm. While no practical implementation of this algorithm existed, it has the best time bounds. This paper describes an implementation of the labeling algorithm that is faster than any existing method on continental road networks.


Short Path Road Network Query Time Compression Scheme Space Usage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. Technical Report MSR-TR-2010-165, Microsoft Research (2010)Google Scholar
  2. 2.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: SODA, pp. 782–793 (2010)Google Scholar
  3. 3.
    Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: Demetrescu, C., et al. (eds.) [10], pp. 175–192Google Scholar
  4. 4.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: ALENEX, pp. 46–59. SIAM, Philadelphia (2007)Google Scholar
  5. 5.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics 15(2.3), 1–31 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32 (2003)Google Scholar
  7. 7.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-Accelerated Shortest Path Trees. In: IPDPS. IEEE, Los Alamitos (2011) (to appear)Google Scholar
  8. 8.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning with Natural Cuts. In: IPDPS. IEEE, Los Alamitos (2011) (to appear)Google Scholar
  9. 9.
    Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance Multi-Level Routing. In: Demetrescu, C., et al. (eds.) [10], pp. 73–92Google Scholar
  10. 10.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS, vol. 74. AMS, Providence (2009)zbMATHGoogle Scholar
  11. 11.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geisberger, R.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. Master’s thesis, Karlsruhe University (2008)Google Scholar
  14. 14.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM Journal on Computing 37, 1637–1655 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, C., et al. (eds.) [10], pp. 41–72Google Scholar
  17. 17.
    Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In: ALENEX, pp. 36–45 (2007)Google Scholar
  18. 18.
    Resende, M., Werneck, R.F.: A Fast Swap-based Local Search Procedure for Location Problems. Annals of Operations Research 150, 205–230 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Thorup, M., Zwick, U.: Approximate Distance Oracles. Journal of the ACM 52(1), 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA

Personalised recommendations