Advertisement

An Experimental Evaluation of Treewidth at Most Four Reductions

  • Alexander Hein
  • Arie M. C. A. Koster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

We analyze the computational effectiveness of the graph reductions proposed by Sanders [12,13] to recognize graphs of treewidth at most four. We show that graphs of treewidth at most four can be recognized extremely fast by this infinite set of reductions. For graphs of larger treewidth, however, the added value of the specific reductions for treewidth four fades away with the width.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM Journal on Algebraic and Discrete Methods 7, 305–314 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Mathematics 306, 337–350 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Information and Computation 208, 259–275 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds. Technical Report UU-CS-2010-22, Dept. of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands (2010)Google Scholar
  7. 7.
    Bodlaender, H.L., Koster, A.M.C.A., van der Eijkhof, F.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Parallel algorithms for series parallel graphs and graphs with treewidth two. Algorithmica 29, 543–559 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    van der Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica 47, 138–158 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hein, A.: Reduktionsregeln für baumweite 4. Bachelor’s thesis, Mathematik, RWTH Aachen University (2010), http://www.math2.rwth-aachen.de/koster
  11. 11.
    Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)Google Scholar
  12. 12.
    Sanders, D.P.: Linear Algorithms for Graphs of Tree-Width at Most Four. PhD thesis, Georgia Institute of Technology (1993)Google Scholar
  13. 13.
    Sanders, D.P.: On linear recognition of tree-width at most four. SIAM Journal on Discrete Mathematics 9(1), 101–117 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Hein
    • 1
  • Arie M. C. A. Koster
    • 2
  1. 1.Department of MathematicsRWTH Aachen UniversityGermany
  2. 2.Lehrstuhl II für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations