Advertisement

Engineering the Modulo Network Simplex Heuristic for the Periodic Timetabling Problem

  • Marc Goerigk
  • Anita Schöbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

The Periodic Event Scheduling Problem (PESP), in which events have to be scheduled repeatedly over a given period, is a complex and well-known discrete problem with numerous real-world applications. One of them is to find periodic timetables which is economically important, but difficult to handle mathematically, since even finding a feasible solution to this problem is known to be NP-hard. On the other hand, there are recent achievements like the computation of the timetable of the Dutch railway system that impressively demonstrate the applicability and practicability of the mathematical model. In this paper we propose different approaches to improve the modulo network simplex algorithm [8], which is a powerful heuristic for the PESP problem, by exploiting improved search methods in the modulo simplex tableau and larger classes of cuts to escape from the many local optima. Numerical experiments on railway instances show that our algorithms are able to handle problems of the size of the German intercity railway network.

Keywords

Outer Loop Timetabling Problem Fundamental Cycle Network Simplex Modus Percentage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroon, L., Huisman, D., Abbink, E., Fioole, P., Fischetti, M., Marti, G., Schrijver, A., Steenbeek, A., Ybema, R.: The new dutch timetable: The OR revolution. Interfaces 39, 6–17 (2009)CrossRefGoogle Scholar
  2. 2.
    Galli, L., Stiller, S.: Strong formulations for the multi-module PESP and a quadratic algorithm for graphical diophantine equation systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 338–349. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Liebchen, C.: Periodic Timetable Optimization in Public Transport. PhD thesis, Technische Universität Berlin (2006)Google Scholar
  4. 4.
    Liebchen, C.: The first optimized railway timetable in practice. Transportation Science 42(4), 420–435 (2008)CrossRefGoogle Scholar
  5. 5.
    Liebchen, C., Möhring, R.: The modeling power of the periodic event scheduling problem: railway timetables — and beyond. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 3–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Liebchen, C., Proksch, M., Wagner, F.H.: Performances of algorithms for periodic timetable optimization. In: Computer-aided Systems in Public Transport, pp. 151–180. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Nachtigall, K.: Periodic Network Optimization and Fixed Interval Timetables. Habilitationsschrift, Deutsches Zentrum für Luft- und Raumfahrt Braunschweig (1998)Google Scholar
  8. 8.
    Nachtigall, K., Opitz, J.: Solving periodic timetable optimisation problems by modulo simplex calculations. In: Proc. ATMOS (2008)Google Scholar
  9. 9.
    Odijk, M.: A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research (B) 30, 455–464 (1996)CrossRefGoogle Scholar
  10. 10.
    Peeters, L.: Cyclic Railway Timetable Optimization. PhD thesis, Erasmus University of Rotterdam (2003)Google Scholar
  11. 11.
    Schachtebeck, M., Schöbel, A.: Lintim – a toolbox for the experimental evaluation of the interaction of different planning stages in public transportation. Technical report, ARRIVAL Report 206 (2009)Google Scholar
  12. 12.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Disc. Math., 550–581 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marc Goerigk
    • 1
  • Anita Schöbel
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGermany

Personalised recommendations