Advertisement

Approximability of Symmetric Bimatrix Games and Related Experiments

  • Spyros Kontogiannis
  • Paul Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

In this work we present a simple quadratic formulation for the problem of computing Nash equilibria in symmetric bimatrix games, inspired by the well-known formulation of Mangasarian and Stone [26]. We exploit our formulation to shed light to the approximability of NE points. First we observe that any KKT point of this formulation (and indeed, any quadratic program) is also a stationary point, and vice versa. We then prove that any KKT point of the proposed formulation (is not necessarily itself, but) indicates a \(\left(<\frac{1}{3}\right)-\)NE point, which is polynomially tractable, given as input the KKT point. We continue by proposing an algorithm for constructing an \(\left(\frac{1}{3}+\delta\right)-\)NE point for any δ > 0, in time polynomial in the size of the game and quasi-linear in \(\frac{1}{\delta}\), exploiting Ye’s algorithm for approximating KKT points of QPs [34]. This is (to our knowledge) the first polynomial time algorithm that constructs ε −NE points for symmetric bimatrix games for any ε close to \(\frac{1}{3}\). We extend our main result to (asymmetric) win lose games, as well as to games with maximum aggregate payoff either at most 1, or at least \(\frac{5}{3}\). To achieve this, we use a generalization of the Brown & von Neumann symmetrization technique [6] to the case of non-zero-sum games, which we prove that is approximation preserving. Finally, we present our experimental analysis of the proposed approximation and other quite interesting approximations for NE points in symmetric bimatrix games.

Keywords

Bimatrix games indefinite quadratic optimization Nash equilibrium approximation symmetrization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addario-Berry, L., Olver, N., Vetta, A.: A polynomial time algorithm for finding nash equilibria in planar win-lose games. Journal of Graph Algorithms and Applications 11(1), 309–319 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adsul, B., Garg, J., Mehta, R., Sohoni, M.: Rank-1 bimatrix games: A homeomorphism and a polynomial time algorithm. In: Proc. of 43rd ACM Symp. on Th. of Comp., STOC 2011 (2011)Google Scholar
  3. 3.
    Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Applications 199, 339–355 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (2003)zbMATHGoogle Scholar
  5. 5.
    Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Brown, G.W., von Neumann, J.: Solutions of games by differential equations. Annals of Mathematical Studies 24, 73–79 (1950)MathSciNetGoogle Scholar
  7. 7.
    Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming 120, 479–495 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 261–272. IEEE Comp. Soc. Press, Los Alamitos (2006)Google Scholar
  9. 9.
    Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and smoothed complexity. In: Proc. of 47th IEEE Symp. on Found. of Comp. Sci. (FOCS 2006), pp. 603–612. IEEE Comp. Soc. Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: Proc. of 18th Int. Joint Conf. on Art. Intel. (IJCAI 2003), pp. 765–771. Morgan Kaufmann, San Francisco (2003)Google Scholar
  12. 12.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate nash equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate nash equilibrium. In: Proc. of 8th ACM Conf. on El. Comm. (EC 2007), pp. 355–358 (2007)Google Scholar
  15. 15.
    Daskalakis, C., Papadimitriou, C.H.: Three player games are hard. Technical Report TR05-139, Electr. Coll. on Comp. Compl., ECCC (2005)Google Scholar
  16. 16.
    Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. Contributions to Game Theory 1, 81–87 (1950)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games & Econ. Behavior 1, 80–93 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (February 2011), http://cvxr.com/cvx
  19. 19.
    Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. Economic Theory 42, 157–173 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kontogiannis, S., Panagopoulou, P., Spirakis, P.: Polynomial algorithms for approximating nash equilibria of bimatrix games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kontogiannis, S., Spirakis, P.: Exploiting concavity in bimatrix games: New polynomially tractable subclasses. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302. Springer, Heidelberg (2010), http://www.cs.uoi.gr/~kontog/pubs/approx10paper-full.pdf Google Scholar
  22. 22.
    Kontogiannis, S., Spirakis, P.: Well supported approximate equilibria in bimatrix games. ALGORITHMICA 57, 653–667 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities – A Qualitative Study. Nonconvex Optimization and its Applications. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12, 413–423 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of 4th ACM Conf. on El. Comm (EC 2003), pp. 36–41. ACM, New York (2003)Google Scholar
  26. 26.
    Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. Journal of Mathematical Analysis and Applications 9(3), 348–355 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Morgenstern, O., von Neumann, J.: The Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)zbMATHGoogle Scholar
  28. 28.
    Moulin, H., Vial, J.P.: Strategically zero-sum games: The class of games whose completely mixed equilibria cannot be improved upon. Int. Journal of Game Theory 7(3/4), 201–221 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Savani, R., von Stengel, B.: Exponentially many steps for finding a nash equilibrium in a bimatrix game. In: Proc. of 45th IEEE Symp. on Found. of Comp. Sci. (FOCS 2004), pp. 258–267 (2004)Google Scholar
  30. 30.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  31. 31.
    Sturm, J.F.: Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software 11-12, 625–653 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tsaknakis, H., Spirakis, P.: An optimization approach for approximate nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Tsaknakis, H., Spirakis, P.: A graph spectral approach for computing approximate nash equilibria. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 378–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Ye, Y.: On the complexity of approximating a kkt point of quadratic programming. Mathematical Programming 80, 195–211 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Spyros Kontogiannis
    • 1
    • 2
  • Paul Spirakis
    • 2
  1. 1.Dept. of Computer ScienceUniversity of IoanninaIoanninaGreece
  2. 2.R.A. Computer Technology InstitutePatras Univ. CampusRio-PatraGreece

Personalised recommendations