Skip to main content

Photonic Crystal Enhanced Absorbance of CVD Graphene

  • Conference paper
  • First Online:
Book cover GraphITA 2011

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

In the first part of this work we describe a chemical vapour deposition (CVD) method developed for graphene synthesis. Graphene samples with a controlled amount of layers have been prepared and transferred onto different substrates. The samples obtained have been characterized by several optical techniques. Optical absorption spectroscopy was used for estimation of the number of deposited graphene layers and the Raman spectra confirmed the presence of a high quality graphene monolayer. In the second part of the work we present a general concept of graphene integration with photonic crystals (PC) for enhancement of the optical absorbance of graphene. We describe a design approach, computer simulations of optical properties and a fabrication process of PC slabs. The experimental details of graphene combination with PC structures and the optical characterization of devices are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K. et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  2. Nair, R. et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  CAS  Google Scholar 

  3. Xing, G. et al.: The physics of ultrafast saturable absorption in graphene. Opt. Express 18(5), 4564–4573 (2010)

    Article  CAS  Google Scholar 

  4. Obraztsov, P., Rybin, M. et al.: Broadband light-induced absorbance change in multilayer graphene. Nano Lett. 11(4), 1540–1545 (2011)

    Article  CAS  Google Scholar 

  5. Bonaccorso, F. et al.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010)

    Article  CAS  Google Scholar 

  6. Bao, Q. et al.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)

    Article  CAS  Google Scholar 

  7. Zhang, H. et al.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17(20), 17630–17635 (2009)

    Google Scholar 

  8. Obraztsova E., Rybin M. et al.: Graphene non-linear optical elements for near and mid-infrared spectral range, Proc. of the graphene iinternational school. Cargese (France), October 11–23 (2010). http://lem.onera.fr/download/lectures/graphene/Obraztsov/Obraztsova%20E_reduit.pdf

  9. Viktorovitch, P. et al.: Photonic crystals: basic concepts and devices. C. R. Phys. 8, 253–266 (2007)

    Article  CAS  Google Scholar 

  10. Viktorovitch, P. et al.: 3D harnessing of light with 2 photonic crystals. Laser Photon. Rev. 4, 401–413 (2010)

    Article  CAS  Google Scholar 

  11. Reina, A. et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Article  CAS  Google Scholar 

  12. Rybin, M. et al.: Control of number of graphene layers grown by chemical vapor deposition. Phys. Status Solidi C 7(11-12), 2785–2788 (2010)

    Article  CAS  Google Scholar 

  13. Ferrari, A. et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  14. Obraztsova, E. et al.: Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. Stat. Sol. B 245(N10), 2055–2059 (2008)

    Article  CAS  Google Scholar 

  15. Ferrier, L. et al.: Slow Bloch mode confinement in 2D photonic crystals for surface operat-ing devices. Opt. Express 16(5), 3136–3145 (2008)

    Article  CAS  Google Scholar 

  16. Ding, Y. et al.: Use of nondegenerate resonant leaky modes to fashion diverse optical spec-tra. Opt. Express 12(9), 1885–1891 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by RFBR grant 10-02-00792, MK-2921.2010.2 project and FP7 project-IRSES No-247007. The support of Ambassade de France en Russie is also aknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rybin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rybin, M., Garrigues, M., Pozharov, A., Obraztsova, E., Seassal, C., Viktorovitch, P. (2012). Photonic Crystal Enhanced Absorbance of CVD Graphene. In: Ottaviano, L., Morandi, V. (eds) GraphITA 2011. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20644-3_24

Download citation

Publish with us

Policies and ethics