Skip to main content

The Effect of Atomic-Scale Defects on Graphene Electronic Structure

  • Conference paper
  • First Online:
GraphITA 2011

Part of the book series: Carbon Nanostructures ((CARBON))

  • 1106 Accesses

Abstract

Graphene, being one-atom thick, is extremely sensitive to the presence of adsorbed atoms and molecules and, more generally, to defects such as vacancies, holes and/or substitutional dopants. This feature, apart from being directly usable in molecular sensor devices, can also be employed to tune graphene electronic properties. Here we focus on those basic features of atomic-scale defects that can be useful for material design. Starting with isolated \(p_z\) defects, we analyse the electronic structure of the defective substrate and how it determines the chemical reactivity towards adsorption (chemisorption) of atomic/molecular species. This is shown to produce non-random arrangement of adatoms on the surfaces. Then, we consider the reverse problem, that is how to use defects to engineer graphene electronic properties. In particular, we show that arranging defects to form honeycomb-shaped superlattices (what we may call “supergraphenes”) a sizeable gap opens in the band structure and new Dirac cones are created right close to the gap region. These possible structures might find important technological applications in the development of graphene-based logic transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Negative values of \(M_{SI}\) only occur on the sublattice where the midgap state vanishes as a consequence of a residual spin-polarization in the inner electrons.

  2. 2.

    For each k point in the Brillouin zone a subgroup of the point symmetry group of graphene \((D_{6h})\) can be defined to describe the symmetry properties of the Bloch wavefunctions. The relevant group operations are those that either leave the vector \({\mathbf{k}}\) invariant or transform it into one of its images, i.e. \({\mathbf{k}}\rightarrow {\mathbf{k}}+{\mathbf{G}}\) with \({\mathbf{G}}\) a reciprocal lattice vector, see e.g. Ref. [21].

References

  1. Mizes, H.A., Foster, J.S.: Science 244, 559 (1989)

    Article  CAS  Google Scholar 

  2. Ruffieux, R., Gröning, O., Schwaller, P., Schlapbach, L.: Phys. Rev. Lett. 84, 4910 (2000)

    Article  CAS  Google Scholar 

  3. Ugeda, M.M., Brihuega, I., Guinea, F., Gómez-Rodríguez, J.M.: Phys. Rev. Lett. 104, 096804 (2010)

    Article  CAS  Google Scholar 

  4. Peres, N.M.R.: Rev. Mod. Phys. 82, 2673 (2010)

    Article  CAS  Google Scholar 

  5. Inui, M., Trugman, S.A., Abrahams, E.: Phys. Rev. B 49, 3190 (1994)

    Article  Google Scholar 

  6. Pereira, V.M., Guinea, F., Lopesdos Santos, J.M.B., Peres, N.M.R., Castro Neto, A.H.: Phys. Rev. Lett. 96, 036801 (2006)

    Article  Google Scholar 

  7. Pereira, V.M., Lopesdos Santos, J.M.B., Castro Neto, A.H.: Phys. Rev. B 77, 115109 (2008)

    Article  Google Scholar 

  8. Naumis, G.G.: Phys. Rev. B 76, 153403 (2007)

    Article  Google Scholar 

  9. Yazyev, O.V., Helm, L.: Phys. Rev. B 75, 125408 (2007)

    Article  Google Scholar 

  10. Casolo, S., Lóvvik, O.M., Martinazzo, R., Tantardini, G.F.: J. Chem. Phys. 130, 054704 (2009)

    Article  Google Scholar 

  11. Boukhvalov, D.W., Katsnelson, M.I., Lichtenstein, A.I.: Phys. Rev. B 77, 035427 (2008)

    Article  Google Scholar 

  12. Hornek\({\ae}\hbox{r}\), L., Rauls, E., Xu, W., Žljivancanin, Ž., Otero, R., Stensgaard, I., Laegsgaard, E., Hammer, B., Besenbacher, F.: Phys. Rev. Lett. 97, 186102 (2006)

    Article  CAS  Google Scholar 

  13. Lieb, E.H.: Phys. Rev. Lett. 62, 1201 (1989)

    Article  Google Scholar 

  14. Rogeau, N., Teillet-Billy, D., Sidis, V.: Chem. Phys. Lett. 431, 135 (2006)

    Article  Google Scholar 

  15. Bonfanti, M., Casolo, S., Tantardini, G.F., Ponti, A., Martinazzo, R.: J. Chem. Phys. 135, 164701 (2011)

    Article  CAS  Google Scholar 

  16. Schwierz, F.: Nat. Nanothech. 5, 487 (2010)

    Article  CAS  Google Scholar 

  17. Avouris, P., Chen, Z., Perebeinos, V.: Nat. Nanotech. 2, 605 (2007)

    Article  CAS  Google Scholar 

  18. Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Nat. Mater. 6, 770 (2007)

    Google Scholar 

  19. Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E.: Nat. Phys. 3, 36 (2007)

    Article  CAS  Google Scholar 

  20. Martinazzo, R., Casolo, S., Tantardini, G.F.: Phys. Rev. B 81, 245420 (2010)

    Article  Google Scholar 

  21. Mirman, R.: Point Groups, Space Groups, Crystals, Molecules. World Scientific, Ltd, Singapore (1999)

    Google Scholar 

  22. Son, Y.W., Cohen, M.L., Louie, S.G.: Phys. Rev. Lett. 97(21), 216803 (2006)

    Article  Google Scholar 

  23. Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A., Pedersen, K.: Phys. Rev. Lett. 100, 136804 (2008)

    Article  Google Scholar 

  24. Fürst, J.A., Pedersen, T.G., Brandbyge, M., Jauho, A.P.: Phys. Rev. B 80(11), 115117 (2009)

    Article  Google Scholar 

  25. Liu, W., Wang, Z.F., Shi, Q.W., Yang, J., Liu, F.: Phys. Rev. B 80, 233405 (2009)

    Article  Google Scholar 

  26. Meyer, J.C., Girit, C.O., Crommie, M.F., Zettl, A.: Appl. Phys. Lett. 92, 123110 (2008)

    Google Scholar 

  27. Fischbein, M.D., Drndic, M.: Appl. Phys. Lett. 93, 113107 (2008)

    Article  Google Scholar 

  28. Shen, T., Wu, Y.Q., Capano, M.A., Rokhinson, L.P., Engel, L.W., Ye, P.D.: Appl. Phys. Lett. 93, 122102 (2008)

    Article  Google Scholar 

  29. Eroms, J., Weiss, D.: New J. Phys. 11, 095021 (2009)

    Article  Google Scholar 

  30. Bai, J.W., Zhong, X., Jiang, S., Y, Y.H., Duan, X.F.: Nat. Nanotech. 5, 190 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Martinazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinazzo, R., Casolo, S., Tantardini, G.F. (2012). The Effect of Atomic-Scale Defects on Graphene Electronic Structure. In: Ottaviano, L., Morandi, V. (eds) GraphITA 2011. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20644-3_16

Download citation

Publish with us

Policies and ethics