Skip to main content

Abstract

This topic concerns the application of naturally occurring nanostructures to surface-enhanced Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osawa M (2001) Surface-enhanced infrared absorption. In: Kawata S (ed) Near-field optics and surface plasmon polaritons. Springer, Berlin/Heidelberg, pp 163–187

    Chapter  Google Scholar 

  2. Yonzon CR, Stuart DA, Zhang X et al (2005) Towards advanced chemical and biological nanosensors–an overview. Talanta 67(3):438–448

    Article  CAS  Google Scholar 

  3. Dou X, Takama T, Yamaguchi Y et al (1997) Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal Chem 69(8):1492–1495

    Article  CAS  Google Scholar 

  4. Moger J, Gribbon P, Sewing A et al (2007) Feasibility study using surface-enhanced Raman spectroscopy for the quantitative detection of tyrosine and serine phosphorylation. Biochim Biophys Acta Gen Subj 1770(6):912–918

    Article  CAS  Google Scholar 

  5. Xu SP, Ji XH, Xu WQ et al (2005) Surface-enhanced Raman scattering studies on immunoassay. J Biomed Opt 10(3):031112/1–031112/12

    Article  CAS  Google Scholar 

  6. Dou X, Yamaguchi Y, Yamamoto H et al (1998) NIR SERS detection of immune reaction on gold colloid particles without bound/free antigen separation. J Raman Spectrosc 29(8):739–742

    Article  CAS  Google Scholar 

  7. Xu SP, Wang LY, Xu WQ et al (2003) Immunological identification with SERS-labeled immunogold nanoparticles by silver staining. Chem J Chin Univ Chin 24(5):900–902

    CAS  Google Scholar 

  8. Zhang ML, Yi CQ, Fan X et al (2008) A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay. Appl Phys Lett 92(4):043116

    Article  Google Scholar 

  9. Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct 35:389–415

    Article  CAS  Google Scholar 

  10. Ortiz C, Zhang D, Xie Y et al (2006) Validation of the drop coating deposition Raman method for protein analysis. Anal Biochem 353(2):157–166

    Article  CAS  Google Scholar 

  11. Ronald A, Stimson WH (1998) The evolution of immunoassay technology. Parasitology 117:S13–S27

    Article  Google Scholar 

  12. Hirsch LR, Jackson JB, Lee A et al (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381

    Article  CAS  Google Scholar 

  13. Ji X, Xu S, Wang L et al (2005) Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloid Surf A Physicochem Eng Aspects 257–258:171–175

    Article  Google Scholar 

  14. Rohr TE, Cotton T, Fan N et al (1989) Immunoassay employing surface-enhanced Raman-spectroscopy. Anal Biochem 182(2):388–398

    Article  CAS  Google Scholar 

  15. Alexander RM (2005) Book Reviewed: The gecko's foot. Bio-inspiration: engineered from nature (Peter Forbes Hardback book, 272 p, ISBN 0007179901, Class number 620.0042) Nature 438(7065):166–166

    Google Scholar 

  16. Kinoshita S, Yoshioka S (2005) Structural colors in biological systems. Osaka University Press, Osaka

    Google Scholar 

  17. Parker AR (1999) Inverterbrate structural colour. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, New York

    Google Scholar 

  18. Potyrailo RA, Ghiradella H, Vertiatchikh A et al (2007) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photonics 1:123–128

    Article  CAS  Google Scholar 

  19. Srinivasarao M (1999) Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem Rev 99(7):1935–1961

    Article  CAS  Google Scholar 

  20. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424(6950):852–855

    Article  CAS  Google Scholar 

  21. Ghiradella H, Aneshansley D, Eisner T et al (1973) Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science 179(4071):415

    Article  Google Scholar 

  22. Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    Article  CAS  Google Scholar 

  23. Vukusic P, Wootton RJ, Sambles JR (2004) Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae). Proc R Soc Lond Ser B Biol Sci 271(1539):595–601

    Article  CAS  Google Scholar 

  24. Yoshioka S, Kinoshita S (2007) Polarization-sensitive color mixing in the wing of the Madagascan sunset moth. Opt Expr 15(5):2691–2701

    Article  Google Scholar 

  25. Volkmer A, Cheng JX, Xie XS (2001) Vibrational imaging with high sensitivity via epidetected coherent anti-stokes Raman scattering microscopy. Phys Rev Lett 8702(2):023901

    Article  Google Scholar 

  26. Vukusic P, Hallam B, Noyes J (2007) Brilliant whiteness in ultrathin beetle scales. Science 315(5810):348–351

    Article  CAS  Google Scholar 

  27. Jewell SA, Vukusic P, Roberts NW (2007) Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New J Phys 9:99

    Article  Google Scholar 

  28. Stoddart PR, Cadusch PJ, Boyce TM et al (2006) Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings. Nanotechnology 17(3):680–686

    Article  CAS  Google Scholar 

  29. Kostovski G, White DJ, Mitchell A et al (2009) Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24(5):1531–1535

    Article  CAS  Google Scholar 

  30. Kneipp J, Kneipp H, Kneipp K (2008) SERS – a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060

    Article  CAS  Google Scholar 

  31. Pelletier MJ, Altkorn R (2001) Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell. Anal Chem 73(6):1393–1397

    Article  CAS  Google Scholar 

  32. Abdelsalam ME, Bartlett PN, Baumberg JJ et al (2005) Electrochemical SERS at a structured gold surface. Electrochem Commun 7(7):740–744

    Article  CAS  Google Scholar 

  33. Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770

    Article  CAS  Google Scholar 

  34. Hunyadi SE, Murphy CJ (2006) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16(40):3929–3935

    Article  CAS  Google Scholar 

  35. White DJ, Mazzolini AP, Stoddart PR (2007) Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J Raman Spectrosc 38(4):377–382

    Article  CAS  Google Scholar 

  36. Yoshida A, Motoyama M, Kosaku A et al (1997) Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool Sci 14(5):737–741

    Article  Google Scholar 

  37. Le Ru EC, Blackie E, Meyer M et al (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

  38. Viets C, Hill W (2000) Single-fibre surface-enhanced Raman sensors with angled tips. J Raman Spectrosc 31(7):625–631

    Article  CAS  Google Scholar 

  39. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77(17):338A–346A

    Article  CAS  Google Scholar 

  40. Garrett NL, Vukusic P, Ogrin F et al (2009) Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis. J Biophotonics 2(3):157–166

    Article  CAS  Google Scholar 

  41. Bryant MA, Pemberton JE (1991) Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag. J Am Chem Soc 113(10):3629–3637

    Article  CAS  Google Scholar 

  42. Bryant MA, Pemberton JE (1991) Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols – behavior of films at Au and comparison to films at Ag. J Am Chem Soc 113(22):8284–8293

    Article  CAS  Google Scholar 

  43. Brakefield PM, French V (1999) Butterfly wings: the evolution of development of colour patterns. Bioessays 21(5):391–401

    Article  Google Scholar 

  44. Vukusic P, Sambles R, Lawrence C et al (2001) Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl Opt 40(7):1116–1125

    Article  CAS  Google Scholar 

  45. Dey S, Hooroo RNK, Bhattacharjee CR (1998) Electron microscopy and spectroscopical studies on the coloured patches on the wing of a butterfly, Graphium sarpedon (Lepidoptera: Papillionidae) with reference to their photobiological and electrical properties. Pigment Cell Res 11(1):1–11

    Article  CAS  Google Scholar 

  46. Weekes SM, Ogrin FY, Murray WA et al (2007) Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir 23(3):1057–1060

    Article  CAS  Google Scholar 

  47. Kostovski G, Chinnasamy U, Jayawardhana S et al (2011) Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv Mater 23(4):531–535

    Article  CAS  Google Scholar 

  48. O’Dwyer C, Gay G, Viaria de Lesegno B et al (2005) Advancing atomic nanolithography: cold atomic Cs beam exposure of alkanethiol self assembled monolayers. J Phys Conf Ser 19:109–117

    Article  Google Scholar 

  49. Briand E, Salmain M, Henry JM et al (2006) Building of an immunosensor: how can the composition and structure of the thiol attachment layer affect the immunosensor efficiency? Biosens Bioelectron 22(3):440–448

    Article  CAS  Google Scholar 

  50. Michota A, Kudelski A, Bukowska J (2002) Molecular structure of cysteamine monolayers on silver and gold substrates – comparative studies by surface-enhanced Raman scattering. Surf Sci 502:214–218

    Article  Google Scholar 

  51. Kudelski A (2002) Raman study on the structure of 3-mercaptopropionic acid monolayers on silver. Surf Sci 502:219–223

    Article  Google Scholar 

  52. Kudelski A, Hill W (1999) Raman study on the structure of cysteamine monolayers on silver. Langmuir 15(9):3162–3168

    Article  CAS  Google Scholar 

  53. Fagnano C, Fini G, Torreggiani A (1995) Raman spectroscopic study of the avidin-biotin complex. J Raman Spectrosc 26(11):991–995

    Article  CAS  Google Scholar 

  54. Huang TS, Delange RJ (1971) Egg white avidin. 2. Isolation, composition, and amino acid sequences of tryptic peptides. J Biol Chem 246(3):686

    CAS  Google Scholar 

  55. Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface. Spectrochim Acta A Mol Biomol Spectrosc 55(7–8):1641–1660

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garrett, N.L. (2012). Naturally Inspired SERS Substrates. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_4

Download citation

Publish with us

Policies and ethics