Skip to main content

Abstract

The integration of laser tweezers with Raman spectroscopy for optical manipulation and spectroscopic analysis of individual micro- and nanoscopic objects in physics, chemistry, and the life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  2. Quidant R, Girard C (2008) Surface-plasmon-based optical manipulation. Laser Photonics Rev 2(1–2):47–57

    Article  CAS  Google Scholar 

  3. Mehta AD et al (1999) Single-molecule biomechanics with optical methods. Science 283(5408):1689–1695

    Article  CAS  Google Scholar 

  4. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816

    Article  CAS  Google Scholar 

  5. Moffitt JR et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  6. Dienerowitz M, Mazilu M, Dholakia K (2008) Optical manipulation of nanoparticles: a review. J Nanophotonics 2:1–32

    Article  Google Scholar 

  7. Lang MJ, Block SM (2003) Resource letter: LBOT-1: laser-based optical tweezers. Am J Phys 71(3):201–215

    Article  Google Scholar 

  8. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851

    Article  CAS  Google Scholar 

  9. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    Article  CAS  Google Scholar 

  10. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Article  CAS  Google Scholar 

  11. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690

    Article  CAS  Google Scholar 

  12. Barton JP, Alexander DR, Schaub SA (1988) Internal and near-surface electromagnetic-fields for a spherical-particle irradiated by a focused laser-beam. J Appl Phys 64(4):1632–1639

    Article  Google Scholar 

  13. Barton JP, Alexander DR, Schaub SA (1989) Internal fields of a spherical-particle illuminated by a tightly focused laser-beam—focal point positioning effects at resonance. J Appl Phys 65(8):2900–2906

    Article  Google Scholar 

  14. Nieminen TA et al (2007) Optical tweezers computational toolbox. J Opt A-Pure Appl Opt 9(8):S196–S203

    Article  Google Scholar 

  15. Jess PRT et al (2006) Dual beam fibre trap for Raman microspectroscopy of single cells. Opt Express 14(12):5779–5791

    Article  CAS  Google Scholar 

  16. Ramser K et al (2004) A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blod cells. Lab Chip 5:431–436

    Article  Google Scholar 

  17. Fallman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Appl Opt 36(10):2107–2113

    Article  CAS  Google Scholar 

  18. Schonbrun E et al (2005) 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13(10):3777–3786

    Article  Google Scholar 

  19. Rusciano G et al (2007) Enhancing Raman tweezers by phase-sensitive detection. Anal Chem 79(10):3708–3715

    Article  CAS  Google Scholar 

  20. Rusciano G et al (2006) Phase-sensitive detection in Raman tweezers. Appl Phys Lett 89(26):261116

    Article  Google Scholar 

  21. Ashkin A et al (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  CAS  Google Scholar 

  22. Urlaub E et al (1994) Raman investigation of styrene polymerization in single optically trapped emulsion particles. Chem Phys Lett 231:511–514

    Article  CAS  Google Scholar 

  23. Ajito K, Torimitsu K (2001) Near-infrared Raman spectroscopy of single particles. Trac-Trends Anal Chem 20(5):255–262

    Article  CAS  Google Scholar 

  24. Xie C, Dinno MA, Li Y (2002) Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt Lett 27(4):249–251

    Article  Google Scholar 

  25. Ajito K, Torimitsu K (2002) Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range. Lab Chip 2:11–14

    Article  CAS  Google Scholar 

  26. Mitchem L, Reid JP (2008) Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap. Chem Soc Rev 37(4):756–769

    Article  CAS  Google Scholar 

  27. Cherney DP, Conboy JC, Harris JM (2003) Optical-trapping Raman microscopy detection of single unilamellar vesicles. Anal Chem 75:6621–6628

    Article  CAS  Google Scholar 

  28. Reid JP (2009) Particle levitation and laboratory scattering. J Quant Spectrosc Radiat Transf 110(14–16):1293–1306

    Article  CAS  Google Scholar 

  29. Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A-Pure Appl Opt 9(8):S139–S156

    Article  CAS  Google Scholar 

  30. Snook RD et al (2009) Raman tweezers and their application to the study of singly trapped eukaryotic cells. Integr Biol 1(1):43–52

    Article  CAS  Google Scholar 

  31. Stevenson DJ, Gunn-Moore F, Dholakia K Light forces the pace: optical manipulation for biophotonics. J Biomed Opt 15(4)

    Google Scholar 

  32. Ramser K, Hanstorp D (2010) Optical manipulation for single-cell studies. J Biophotonics 3(4):187–206

    Article  CAS  Google Scholar 

  33. Cherney DP, Harris JM (2010) Confocal Raman microscopy of optical-rrapped particles in liquids. In: Annual review of analytical chemistry, vol 3, Annual Reviews, Palo Alto, pp 277–297

    Google Scholar 

  34. Lankers M et al (1997) Raman investigations on laser-trapped gas bubbles. Chem Phys Lett 277:331–334

    Article  CAS  Google Scholar 

  35. Kiefer W et al (1997) Raman-Mie scattering from single laser trapped microdroplets. J Mol Struct 408/409:113–120

    Article  Google Scholar 

  36. Ajito K, Morita M (1999) Imaging and spectroscopic analysis of single microdroplets containing p-cresol using the near-infrared laser tweezers Raman microprobe system. Sur Sci 428:141–146

    Article  Google Scholar 

  37. Anquetil PA et al (2003) Laser Raman spectroscopic analysis of polymorphic forms in microliter fluid volumes. J Pharm Sci 92(1):149–160

    Article  CAS  Google Scholar 

  38. Bridges TE, Houlne MP, Harris JM (2004) Spatially resolved analysis of small particles by confocal Raman microscopy: depth profiling and optical trapping. Anal Chem 76(3):576–584

    Article  CAS  Google Scholar 

  39. Buajarern J et al (2006) Controlling and characterizing the coagulation of liquid aerosol droplets. J Chem Phys 125(11):114506

    Article  Google Scholar 

  40. Hamden KE et al (2005) Spectroscopic analysis of Kaposi’s sarcoma-associated herpesvirus infected cells by Raman tweezers. J Virol Methods 129(2):145–151

    Article  CAS  Google Scholar 

  41. Chan JW et al (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90(2):648–656

    Article  CAS  Google Scholar 

  42. Zheng F, Qin YJ, Chen K (2007) Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer. J Biomed Opt 12(3):034002

    Article  Google Scholar 

  43. Chan JW et al (2008) Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal Chem 80(6):2180–2187

    Article  CAS  Google Scholar 

  44. Harvey TJ et al (2008) Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. J Biomed Opt 13(6):064004

    Article  Google Scholar 

  45. Harvey TJ et al (2009) Classification of fixed urological cells using Raman tweezers. J Biophotonics 2(1–2):47–69

    Article  CAS  Google Scholar 

  46. Chan JW, Taylor DS, Thompson DL (2009) The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers 91(2):132–139

    Article  CAS  Google Scholar 

  47. Chan JW et al (2005) Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. Anal Chem 77(18):5870–5876

    Article  CAS  Google Scholar 

  48. Rong X et al (2010) Real-time detection of single-living pancreatic beta-cell by laser tweezers Raman spectroscopy: high glucose stimulation. Biopolymers 93(7):587–594

    Article  CAS  Google Scholar 

  49. Xie C et al (2003) Study of dynamical process of heat denaturation in optically trapped single microorgansims by near-infrared Raman spectroscopy. J appl phys 94(9):6138–6142

    Article  CAS  Google Scholar 

  50. Alexander TA, Pellegrino PM, Gillespie JB (2003) Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc 57(11):1340–1345

    Article  CAS  Google Scholar 

  51. Chan JW et al (2004) Reagentless identification of single bacterial spores in aqueaous solution by confocal laser tweezers Raman spectroscopy. Anal Chem 76:599–603

    Article  CAS  Google Scholar 

  52. Basar G, Kin S (2008) Monitoring of spectroscopic changes of a single trapped fission yeast cell by using a Raman tweezers set-up. Opt Commun 281(19):4998–5003

    Article  CAS  Google Scholar 

  53. Huang WE, Ward AD, Whiteley AS (2009) Raman tweezers sorting of single microbial cells. Environ Microbiol Rep 1(1):44–49

    Article  CAS  Google Scholar 

  54. Peng LX et al (2009) Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal Chem 81(10):4035–4042

    Article  CAS  Google Scholar 

  55. Huang X et al (2010) Probing the machanism and Ca-DPA concentration of individual Bacillus spores using trapping and raman spectroscopy. Spectrosc Spectr Anal 30(8):2151–2156

    CAS  Google Scholar 

  56. Ramser K et al (2004) Resonance Raman spectroscopy of optically trapped functional erythrocytes. J Biomed Opt 9(3):593–600

    Article  Google Scholar 

  57. Ramser K et al (2007) Micro-resonance Raman study of optically trapped Escherichia coli cells overexpressing human neuroglobin. J Biomed Opt 12(4):044009

    Article  Google Scholar 

  58. Rusciano G et al (2008) Raman tweezers as a diagnostic tool of Hemoglobin-related blood disorders. Sensors 8(12):7818–7832

    Article  CAS  Google Scholar 

  59. De Luca AC, Rusciano G (2007) Monitoring cellular diseases by Raman tweezers. Nuovo Cimento Della Societa Italiana Di Fisica B-General Physics Relativity Astronomy and Mathematical Physics and Methods. Il Nuovo Cimento B 122(6–7):731–738

    Google Scholar 

  60. De Luca AC et al (2008) Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers. Opt Express 16(11):7943–7957

    Article  Google Scholar 

  61. Rao S et al (2009) Raman study of mechanically induced xxygenation state transition of red blood cells using optical tweezers. Biophys J 96(1):209–216

    Article  CAS  Google Scholar 

  62. Zachariah E et al (2010) Probing oxidative stress in single erythrocytes with Raman tweezers. J Photochem Photobiol B-Biol 100(3):113–116

    Article  CAS  Google Scholar 

  63. Ojeda JF et al (2007) Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy: reply. Opt Express 15(10):6000–6002

    Article  Google Scholar 

  64. Ojeda JF et al (2006) Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy. Opt Express 14(12):5385–5393

    Article  CAS  Google Scholar 

  65. Bak J, Jorgensen TM (2007) Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy: comment. Opt Express 15(10):5997–5999

    Article  Google Scholar 

  66. Tang H et al (2007) NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers. Opt Express 15(20):12708–12716

    Article  Google Scholar 

  67. Rao S et al (2010) Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl Phys Lett 96(21):213701

    Article  Google Scholar 

  68. De Gelder J et al (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147

    Article  Google Scholar 

  69. Lord RC, Yu N-T (1970) Laser-excited Raman spectroscopy of biomolecules *1: I. Native lysozyme and its constituent amino acids. J Mol Biol 50(2):509–524

    Article  CAS  Google Scholar 

  70. Baek M et al (1988) UV-excited resonance raman-spectra of heat denatured lysozyme and Staphylococcus epidermidis. Appl Spectrosc 42(7):1312–1314

    Article  CAS  Google Scholar 

  71. Baek M, Nelson WH, Hargraves PE (1989) Ultra-violet resonance Raman-spectra of live cyanobacteria with 222.5–251.0-nm pulsed laser excitation. Appl Spectrosc 43(1):159–162

    Article  CAS  Google Scholar 

  72. Nelson WH, Manoharan R, Sperry JF (1992) UV resonance Raman studies of bacteria. Appl Spectrosc Rev 27(1):67–124

    Article  Google Scholar 

  73. Sureau F et al (1990) An ultraviolet micro-Raman spectrometer—resonance Raman-spectroscopy within single living cells. Appl Spectrosc 44(6):1047–1051

    Article  CAS  Google Scholar 

  74. Prikulis J et al (2004) Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett 4(1):115–118

    Article  CAS  Google Scholar 

  75. Ramser K et al (2003) Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes. J Biomed Opt 8(2):173–178

    Article  CAS  Google Scholar 

  76. Puppels GJ et al (1991) Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but with 660 nm laser light. Exp Cell Res 195:361–367

    Article  CAS  Google Scholar 

  77. Ramser K et al (2007) A combined micro-resonance Raman and absorption set-up enabling in vivo studies under varying physiological conditions: the nerve globin in the nerve cord of Aphrodite aculeata. J Biochem Biophys Methods 70:627–633

    Article  CAS  Google Scholar 

  78. Wood BR, McNaughton D (2002) Raman excitation wavelenghts investigations of single red blood cells in vivo. J Raman Spectrosc 33:517–523

    Article  CAS  Google Scholar 

  79. Mirsaidov U et al (2008) Optimal optical trap for bacterial viability. Phys Rev E 78(2)

    Google Scholar 

  80. Neuman KC et al (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    Article  CAS  Google Scholar 

  81. Liang H et al (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70(3):1529–1533

    Article  CAS  Google Scholar 

  82. Leitz G et al (2002) Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power and time dependence. Biophys J 82(4):2224–2231

    Article  CAS  Google Scholar 

  83. Konig K et al (1996) Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa. Hum Reprod 11(10):2162–2164

    CAS  Google Scholar 

  84. Haes AJ et al (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bull 30(5):368–375

    Article  CAS  Google Scholar 

  85. Svoboda K, Block SM (1994) Optical trapping of metallic Rayleigh particles. Opt Lett 19(13):930–932

    Article  CAS  Google Scholar 

  86. Hansen PM et al (2005) Expanding the optical trapping range of gold nanoparticles. Nano Lett 5(10):1937–1942

    Article  CAS  Google Scholar 

  87. Svedberg F et al (2006) Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett 6(12):2639–2641

    Article  CAS  Google Scholar 

  88. Tong LM, Miljkovic VD, Kall M (2010) Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett 10(1):268–273

    Article  CAS  Google Scholar 

  89. Tanaka Y et al (2009) Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam. J Phys Chem C 113(27):11856–11860

    Article  CAS  Google Scholar 

  90. Balint S et al (2009) Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J Phys Chem C 113(41):17724–17729

    Article  CAS  Google Scholar 

  91. Jordan P et al (2005) Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. Opt Express 13(11):4148–4153

    Article  CAS  Google Scholar 

  92. Tong LM et al (2009) Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip 9(2):193–195

    Article  CAS  Google Scholar 

  93. Kneipp J, Kneipp H, Kneipp K (2007) Surface-enhanced Raman spectroscopy-based optical labels deliver chemical information from live cells. In: Kneipp K et al (eds) New approaches in biomedical spectroscopy. Amer Chem Soc, Washington, pp 186–199

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tong, L., Ramser, K., Käll, M. (2012). Optical Tweezers for Raman Spectroscopy. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_18

Download citation

Publish with us

Policies and ethics