Skip to main content

In Situ Raman Spectroscopy of Oxidation of Carbon Nanomaterials

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization

Abstract

In situ Raman spectroscopy during heating in a controlled environment allows for a time-resolved investigation of the oxidation kinetics of carbon nanomaterials and can identify changes in material structure and composition during oxidation. In this chapter, we describe the application of in situ Raman spectroscopy to determine conditions for selective oxidation and purification of carbon nanotubes (CNT) and nanodiamond (ND).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogotsi Y (ed) (2006) Nanomaterials handbook. CRC Press, Baco Raton

    Google Scholar 

  2. Chiganov AS (2004) Selective inhibition of the oxidation of nanodiamonds for their cleaning. Phys Solid State 46(4):595–787

    Article  CAS  Google Scholar 

  3. Evans EL, Griffiths RJM, Thomas JM (1971) Kinetics of single-layer graphite oxidation: evaluation by electron microscopy. Science 171(3967):174–175

    Article  CAS  Google Scholar 

  4. Lee SM, Lee YH, Hwang YG, Hahn JR et al (1999) Defect-induced oxidation of graphite. Phys Rev Lett 82(1):217–220

    Article  CAS  Google Scholar 

  5. Yang RT, Wong C (1981) Kinetics and mechanism of oxidation of basal-plane on graphite. J Chem Phys 75(9):4471–4476

    Article  CAS  Google Scholar 

  6. Yang RT, Wong C (1981) Mechanism of single-layer graphite oxidation: evaluation by electron micriscopy. Science 214(4519):437–438

    Article  CAS  Google Scholar 

  7. Shimada T, Yanase H, Morishita K, Hayashi J-I et al (2004) Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon 42(8–9):1635–1639

    Article  CAS  Google Scholar 

  8. Mazzoni MSC, Chacham H, Ordejón P, Sánchez-Portal D et al (1999) Energetics of the oxidation and opening of a carbon nanotube. Phys Rev B 60(4):R2208

    Article  CAS  Google Scholar 

  9. Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S et al (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420):522–525

    Article  CAS  Google Scholar 

  10. Navarro MV, Seaton NA, Mastral AM, Murillo R (2006) Analysis of the evolution of the pore size distribution and the pore network connectivity of a porous carbon during activation. Carbon 44(11):2281–2288

    Article  CAS  Google Scholar 

  11. Pastor-Villegas J, Duran-Valle CJ (2002) Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 40(3):397–402

    Article  CAS  Google Scholar 

  12. Rodriguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7):1111–1118

    Article  CAS  Google Scholar 

  13. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15):3124–3131

    Article  CAS  Google Scholar 

  14. Urbonaite S, Wachtmeister S, Mirguet C, Coronel E et al (2007) EELS studies of carbide derived carbons. Carbon 45(10):2047–2053

    Article  CAS  Google Scholar 

  15. Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30(2):144–152

    Article  CAS  Google Scholar 

  16. Rodríguez-Reinoso F, Molina-Sabio M, González MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33(1):15–23

    Article  Google Scholar 

  17. Munoz-Guillena MJ, Illan-Gomez MJ, Martin-Martinez JM, Linares-Solano A et al (1992) Activated carbons from Spanish coals. 1. Two-stage carbon dioxide activation. Energy Fuels 6(1):9–15

    Article  CAS  Google Scholar 

  18. Huang ZH, Kang FY, Yang JB, Liang KM et al (2002) Effect of CO in activating gas on the pore structure of activated carbon fiber with CO2 activation. J Mat Sci Lett 22(4):293–295

    Article  Google Scholar 

  19. McKee DW (1981) Catalyzed gasification of carbon. In: Walker PL, Thrower P (eds) Chemistry. Marcel Dekker, New York

    Google Scholar 

  20. Vannice MA (2005) Kinetics of catalytic reaction. Springer, New York

    Book  Google Scholar 

  21. McKee DW (1970) Metal oxides as catalyst for the oxidation of graphite. Carbon 8(5):623–626

    Article  CAS  Google Scholar 

  22. Li J, Zhang Y (2005) A simple purification for single-walled carbon nanotubes. Physica E Low Dimens Syst Nanostruct 28(3):309–312

    Article  CAS  Google Scholar 

  23. Saxby JD, Chatfield SP, Palmisano AJ, Vassallo AM et al (1992) Thermogravimetric analysis of buckminsterfullerene and related materials in air. J Phys Chem 96(1):17–18

    Article  CAS  Google Scholar 

  24. Illekova E, Csomorova K (2005) Kinetics of oxidation in various forms of carbon. J Therm Anal Calorim 80(1):103–108

    Article  CAS  Google Scholar 

  25. Gajewski S, Maneck HE, Knoll U, Neubert D et al (2003) Purification of single walled carbon nanotubes by thermal gas phase oxidation. Diamond Relat Mater 12(3–7):816–820

    Article  CAS  Google Scholar 

  26. Moon JM, An KH, Lee YH, Park YS et al (2001) High-yield purification process of singlewalled carbon nanotubes. J Phys Chem B 105(24):5677–5681

    Article  CAS  Google Scholar 

  27. Yang CM, Kaneko K, Yudasaka M, Iijima S (2002) Effect of purification on pore structure of HiPco single-walled carbon nanotube aggregates. Nano Lett 2(4):385–388

    Article  CAS  Google Scholar 

  28. Gogotsi Y (ed) (2006) Nanotubes and nanofibers. CRC Press, Boca Raton

    Google Scholar 

  29. Brukh R, Mitra S (2007) Kinetics of carbon nanotube oxidation. J Mater Chem 17(7):619–623

    Article  CAS  Google Scholar 

  30. Ajayan PM, Lijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361(6410):333–334

    Article  CAS  Google Scholar 

  31. Park YS, Choi YC, Kim KS, Chung D-C et al (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39(5):655–661

    Article  CAS  Google Scholar 

  32. Sharp JH, Wentworth SA (1969) Kinetic analysis of thermogravimetric data. Anal Chem 41(14):2060–2062

    Article  CAS  Google Scholar 

  33. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  34. Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2004) Determination of nanotubes properties by Raman spectroscopy. Philos Trans Roy Society A-Math Phys Engin Sci 362(1824):2311–2336

    Article  CAS  Google Scholar 

  35. Puech P, Flahaut E, Bassil A, Juffmann T et al (2007) Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation. J Raman Spectrosc 38(6):714–720

    Article  CAS  Google Scholar 

  36. Zhao X, Ando Y, Qin LC, Kataura H et al (2002) Characteristic Raman spectra of multiwalled carbon nanotubes. Physica B-Cond Mat 323(1–4):265–266

    Article  CAS  Google Scholar 

  37. Rao AM, Jorio A, Pimenta MA, Dantas MSS et al (2000) Polarized Raman study of aligned multiwalled carbon nanotubes. Phys Rev Lett 84(8):1820–1823

    Article  CAS  Google Scholar 

  38. Zhao XL, Ando Y, Qin LC, Kataura H et al (2002) Multiple splitting of G-band modes from individual multiwalled carbon nanotubes. Appl Phys Lett 81(14):2550–2552

    Article  CAS  Google Scholar 

  39. Benoit JM, Buisson JP, Chauvet O, Godon C et al (2002) Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory. Phys Rev B 66(7):073417-1–073417-4

    Article  CAS  Google Scholar 

  40. Zhao XL, Ando Y, Qin LC, Kataura H et al (2002) Radial breathing modes of multiwalled carbon nanotubes. Chem Phys Lett 361(1–2):169–174

    Article  CAS  Google Scholar 

  41. Jorio A, Saito R, Hafner JH, Lieber CM et al (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86(6):1118–1121

    Article  CAS  Google Scholar 

  42. Ci LJ, Zhou ZP, Yan XQ, Liu DF et al (2003) Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method. J Appl Phys 94(9):5715–5719

    Article  CAS  Google Scholar 

  43. Henrard L, Hernandez E, Bernier P, Rubio A (1999) van der Waals interaction in nanotube bundles: consequences on vibrational modes. Phys Rev B 60(12):R8521–R8524

    Article  CAS  Google Scholar 

  44. Osswald S, Flahaut E, Gogotsi Y (2006) In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes. Chem Mater 18(6):1525–1533

    Article  CAS  Google Scholar 

  45. Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402(4–6):422–427

    Article  CAS  Google Scholar 

  46. Thomsen C, Reich S (2000) Double resonant Raman scattering in graphite. Phys Rev Lett 85(24):5215–5217

    Article  Google Scholar 

  47. Sato K, Saito R, Oyama Y, Jiang J et al (2006) D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem Phys Lett 427(1–3):117–121

    Article  CAS  Google Scholar 

  48. Maultzsch J, Reich S, Thomsen C, Webster S et al (2002) Raman characterization of boron-doped multiwalled carbon nanotubes. Appl Phys Lett 81(14):2647–2649

    Article  CAS  Google Scholar 

  49. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  50. Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS et al (1999) Origin of dispersive effects of the Raman D band in carbon materials. Phys Rev B 59(10):R6585–R6588

    Article  CAS  Google Scholar 

  51. Knight DS, White WB (1989) Characterization of diamond films by Raman-spectroscopy. J Mater Res 4(2):385–393

    Article  CAS  Google Scholar 

  52. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  53. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  54. Dresselhaus MS, Dresselhaus G (1982) Light scattering in solids III. Springer, Berlin\Heidelberg

    Google Scholar 

  55. Solin SA, Caswell N (1981) Raman-scattering from alkali graphite-intercalation compounds. J Raman Spectrosc 10(1):129–135

    Article  CAS  Google Scholar 

  56. Jorio A, Filho AGS, Dresselhaus G, Dresselhaus MS et al (2002) G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys Rev B (Condensed Matter Mater Phys) 65(15):155412–155419

    Article  CAS  Google Scholar 

  57. Maultzsch J, Reich S, Thomsen C (2001) Chirality-selective Raman scattering of the D mode in carbon nanotubes. Phys Rev B 6412(12):121407-1–121407-4

    Google Scholar 

  58. Ci LJ, Zhou ZP, Song L, Yan XQ et al (2003) Temperature dependence of resonant Raman scattering in double-wall carbon nanotubes. Appl Phys Lett 82(18):3098–3100

    Article  CAS  Google Scholar 

  59. Osswald S, Behler K, Gogotsi Y (2008) Laser-induced light emission from carbon nanoparticles. J Appl Phys 104(7):074308-1–074308-6

    Article  CAS  Google Scholar 

  60. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736

    Article  CAS  Google Scholar 

  61. Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62(8):1181–1221

    Article  CAS  Google Scholar 

  62. Behler K, Osswald S, Ye H, Dimovski S et al (2006) Effect of thermal treatment on the structure of multi-walled carbon nanotubes. J Nanopart Res 8:615–625

    Article  CAS  Google Scholar 

  63. Fanning PE, Vannice MA (1993) A drifts study of the formation of surface groups on carbon by oxidation. Carbon 31(5):721–730

    Article  CAS  Google Scholar 

  64. Kuhlmann U, Jantoljak H, Pfander N, Bernier P et al (1998) Infrared active phonons in single-walled carbon nanotubes. Chem Phys Lett 294(1–3):237–240

    Article  CAS  Google Scholar 

  65. Zawadzki J (1980) Ir spectroscopic investigations of the mechanism of oxidation of carbonaceous films with HNO3 solution. Carbon 18(4):281–285

    Article  CAS  Google Scholar 

  66. Kastner J, Pichler T, Kuzmany H, Curran S et al (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221(1–2):53–58

    Article  CAS  Google Scholar 

  67. Liu M, Yang Y, Zhu T, Liu Z (2005) Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43(7):1470–1478

    Article  CAS  Google Scholar 

  68. Chen X-H, Chen C-S, Xiao H-N, Chen X-H et al (2005) Lipophilic functionalization of multi-walled carbon nanotubes with stearic acid. Carbon 43(8):1800–1803

    Article  CAS  Google Scholar 

  69. Zawadzki J (1989) Infrared-spectroscopy in surface-chemistry of carbons. Chem Phys Carbon 21:147–380

    CAS  Google Scholar 

  70. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Uspekhi Khimii 70(7):687–708, in Russian

    Google Scholar 

  71. Gruen DM, Shenderova OA, Vul AY (eds) (2005) Synthesis, properties and applications of ultrananocrystalline diamond, vol 192, NATO Science series. Series II: Mathematics, physics and chemistry. Springer, Dordrecht\Berlin\Heidelberg\New York, p 401

    Google Scholar 

  72. Shenderova OA, Gruen DM (eds) (2006) Ultrananocrystalline diamond: synthesis, properties, and applications. William-Andrew, Norwich

    Google Scholar 

  73. Shenderova OA, McGuire G (2006) Nanocrystalline diamond. In: Gogotsi Y (ed) Nanomaterials handbook. CRC Taylor and Francis Group, Boca Raton\London\New York, pp 203–237

    Google Scholar 

  74. Danilenko VV (2003) Synthesizing and sintering of diamond by explosion. Energoatomizdat, Moscow, p 272

    Google Scholar 

  75. Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46(4):595–599

    Article  CAS  Google Scholar 

  76. Dolmatov VY (2003) Ultradisperse diamonds of detonation synthesis: production, properties and applications. State Polytechnical University, St. Petersburg

    Google Scholar 

  77. Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Russian Chem Rev 70:607

    Article  CAS  Google Scholar 

  78. Osswald S, Yushin G, Mochalin V, Kucheyev S et al (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128:11635–11642

    Article  CAS  Google Scholar 

  79. Danilenko VV (2005) Specific features of synthesis of detonation nanodiamonds. Combust Explos Shock Waves 41(5):577–588

    Article  Google Scholar 

  80. Yushin GN, Osswald S, Padalko VI, Bogatyreva GP et al (2005) Effect of sintering on structure of nanodiamond. Diamond Related Mater 14(10):1721–1729

    Article  CAS  Google Scholar 

  81. Osswald S, Gurga A, Kellogg F, Cho K et al (2007) Plasma pressure compaction of nanodiamond. Diamond Related Mater 16(11):1967–1973

    Article  CAS  Google Scholar 

  82. Gordeev S (2004) Do small nanodiamonds exist? J Superhard Mater 6:34–36, in Russian

    Google Scholar 

  83. Gordeev SK (2006) Carbon composites based nanodiamonds. In: Nanocarbon and nanodiamond. St. Petersburg, Russia

    Google Scholar 

  84. Pichot V, Comet M, Fousson E, Baras C et al (2008) An efficient purification method for detonation nanodiamonds. Diamond Related Mater 17:13–22

    Article  CAS  Google Scholar 

  85. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil Trans Roy Soc Lond A 362:2267–2565

    Google Scholar 

  86. Osswald S, Mochalin VN, Havel M, Yushin G et al (2009) Phonon confinement effects in the Raman spectrum of nanodiamond. Phys Rev B 80(7):075419

    Article  CAS  Google Scholar 

  87. Mochalin V, Osswald S, Gogotsi Y (2009) Contribution of functional groups to the Raman spectrum of nanodiamond. Chem Mater 21(2):273–279

    Article  CAS  Google Scholar 

  88. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans Roy Soc Lond Ser A-Math Phys Eng Sci 362(1824):2477–2512

    Article  CAS  Google Scholar 

  89. Huang F, Tong Y, Yun S (2004) Synthesis mechanism and technology of ultrafine diamond from detonation. Phys Solid State 46(4):616–619

    Article  CAS  Google Scholar 

  90. Mochalin VN, Osswald S, Portet C, Yushin G et al (2008) High temperature functionalization and surface modification of nanodiamond powders. Mater Res Soc Symp Proc 1039: 1039-P11-03

    Google Scholar 

  91. Ji SF, Jiang TL, Xu K, Li SB (1998) FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl Surf Sci 133(4):231–238

    Article  CAS  Google Scholar 

  92. Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33(12):1663–1671

    Article  CAS  Google Scholar 

  93. Kuznetsov VL, Aleksandrov MN, Zagoruiko IV, Chuvilin AL et al (1991) Study of ultradispersed diamond powders obtained using explosion energy. Carbon 29(4–5):665–668

    Article  CAS  Google Scholar 

  94. Osswald S, Havel M, Mochalin V, Yushin G et al (2008) Increase of nanodiamond crystal size by selective oxidation. Diamond Related Mater 17(7–10):1122–1126

    Article  CAS  Google Scholar 

  95. Osswald S, Yushin G, Mochalin V, Kucheyev SO et al (2006) Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128(35):11635–11642

    Article  CAS  Google Scholar 

  96. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1(1):22–31

    Article  CAS  Google Scholar 

  97. Zhang Z, Zhou F, Lavernia EJ (2003) On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall Mater Trans A 34A(6):1349–1355

    Article  CAS  Google Scholar 

  98. Palosz B (2006) Structure of nano-crystals: the key to understanding the unique properties of nano-materials. In: Mitura NS, Niedzielski P, Walkowiak B (eds) Wydawnictwo Naukowe. Nanodiam, Warszawa, pp 129

    Google Scholar 

  99. Alcaniz-Monge J, Linares-Solano A, Rand B (2002) Mechanism of adsorption of water in carbon micropores as revealed by a study of activated carbon fibers. J Phys Chem B 106(12):3209–3216

    Article  CAS  Google Scholar 

  100. Ager JW, Veirs DK, Rosenblatt GM (1991) Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. Phys Rev B 43(8):6491

    Article  CAS  Google Scholar 

  101. Yoshikawa M, Mori Y, Obata H, Maegawa M et al (1995) Raman scattering from nanometer-sized diamond. Appl Phys Lett 67(5):694–696

    Article  CAS  Google Scholar 

  102. Yoshikawa M, Mori Y, Maegawa M, Katagiri G et al (1993) Raman-scattering from diamond particles. Appl Phys Lett 62(24):3114–3116

    Article  CAS  Google Scholar 

  103. Yang ZP, Ci LJ, Bur JA, Lin SY et al (2008) Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett 8(2):446–451

    Article  CAS  Google Scholar 

  104. Ajayan PM, Terrones M, de la Guardia A, Huc V et al (2002) Nanotubes in a flash – ignition and reconstruction. Science 296(5568):705

    Article  CAS  Google Scholar 

  105. Wei JQ, Zhu HW, Wu DH, Wei BQ (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84(24):4869–4871

    Article  CAS  Google Scholar 

  106. Wang SM, Hu LG, Lu ZD, Zhao DM et al (2003) White and bright radiation from nanostructured carbon. Chinese J Optoelectronics Laser 14(2):215–220

    Google Scholar 

  107. Wang S, Hu L, Zhang B, Zhao D et al (2005) Electromagnetic excitation of nano-carbon in vacuum. Opt Express 13(10):3625–3630

    Article  CAS  Google Scholar 

  108. Ferrari AC, Robertson J (2004) Raman spectrsocopy in carbons: from nanotubes to diamond. Philos Trans Roy Soc A 362:2267–2565

    Google Scholar 

  109. Fischbach DB, Couzi M (1986) Temperature-dependence of Raman-scattering by disordered carbon materials. Carbon 24(3):365–369

    Article  CAS  Google Scholar 

  110. Huang FM, Yue KT, Tan PH, Zhang SL et al (1998) Temperature dependence of the Raman spectra of carbon nanotubes. J Appl Phys 84(7):4022–4024

    Article  CAS  Google Scholar 

  111. Ni ZH, Fan HM, Fan XF, Wang HM et al (2007) High temperature Raman spectroscopy studies of carbon nanowalls. J Raman Spectrosc 38(11):1449–1453

    Article  CAS  Google Scholar 

  112. Song L, Ma JW, Ren Y, Zhou WY et al (2008) Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Appl Phys Lett 92(12):121905–121905-3

    Article  CAS  Google Scholar 

  113. Kukovecz A, Smolik M, Bokova S, Kataura H et al (2005) Determination of the diameter distribution of single-wall carbon nanotubes from the Raman G-band using an artificial neural network. J Nanosci Nanotechnol 5(2):204–208

    Article  CAS  Google Scholar 

  114. Zhao Q, Wagner HD (2004) Raman spectroscopy of carbon-nanotube-based composites. Phil Trans Roy Soc Lond A 362(1824):2407–2424

    Article  CAS  Google Scholar 

  115. Rao AM, Richter E, Bandow S, Chase B et al (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275(5297):187–191

    Article  CAS  Google Scholar 

  116. Keyvan S, Rossow R, Romero C (2006) Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer. Fuel 85(5–6):796–802

    Article  CAS  Google Scholar 

  117. Chang H, Charalampopoulos TT (1990) Determination of the wavelength dependence of refractive indices of flame soot. Phil Trans Roy Soc Lond A 430(1880):577–591

    CAS  Google Scholar 

  118. Rohlfing EA (1988) Optical-emission studies of atomic, molecular, and particulate carbon produced from laser vaporization cluster source. J Chem Phys 89(10):6103–6112

    Article  CAS  Google Scholar 

  119. Savvatimskiy AI (2005) Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43(6):1115–1142

    Article  CAS  Google Scholar 

  120. Kim HS, Shioya M, Takaku A (1999) Sublimation and deposition of carbon during internal resistance heating of carbon fibers. J Mater Sci 34(18):4613–4622

    Article  CAS  Google Scholar 

  121. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518

    Article  CAS  Google Scholar 

  122. Qiao ZJ, Li JJ, Zhao NQ, Shi CS et al (2006) Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scripta Materialia 54(2):225–229

    Article  CAS  Google Scholar 

  123. Behler K, Osswald S, Ye H, Dimovski S et al (2006) Effect of thermal treatment on the structure of multi-walled carbon nanotubes. J Nanoparticle Res 8(5):615–625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osswald, S., Gogotsi, Y. (2012). In Situ Raman Spectroscopy of Oxidation of Carbon Nanomaterials. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_12

Download citation

Publish with us

Policies and ethics