Skip to main content
  • 5879 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferraro JR, Nakamoto K, Brown C (2003) Introductory Raman spectroscopy. Academic, New York

    Google Scholar 

  2. Smith E, Dent G (2005) Modern Raman spectroscopy, a practical approach. Wiley, New York

    Google Scholar 

  3. Raman CV, Krishnan KS (1928) A new radiation. Ind J Phys 2:387

    CAS  Google Scholar 

  4. Weber WH, Merlin R (2010) Raman scattering in materials science. Springer, Berlin

    Google Scholar 

  5. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442

    Article  CAS  Google Scholar 

  6. Fainstein A, Jusserand B (2007) Raman scattering in resonant cavities. In: Cardona M, Merlin R (eds) Light scattering in solid IX, vol 108. Springer-Verlag, Berlin, p 17

    Chapter  Google Scholar 

  7. Rottwitt K, Nielsen K, Povlsen JH, Emiliyanov G, Hansen TP, Jensen JB (2005) Raman spectroscopy using photonic crystal fibers. Proceedings of SPIE in photonic crystals and photonic crystal fibers for sensing applications, vol 6005, pp 387

    Google Scholar 

  8. Kneipp K, Moskovits M, Kneipp H (eds) (2006) Surface enhanced Raman scattering – Physics and application, vol 103. Springer, Berlin

    Google Scholar 

  9. Fleischmanna M, Hendraa PJ, McQuillana AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163

    Article  Google Scholar 

  10. Etchegoin P, Cohen LF, Hartigan H, Brown RJC, Milton MJT, Gallop JC (2003) Electromagnetic contribution to surface enhanced Raman scattering revisited. J Chem Phys 119:5281

    Article  CAS  Google Scholar 

  11. Le Ru E, Etchegoin P (2008) Principles of surface enhanced Raman spectroscopy: and related plasmonic effects. Elsevier Science, New York

    Google Scholar 

  12. Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  13. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279

    Article  CAS  Google Scholar 

  14. Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. Proc Nat Acad Sci 103:13300

    Article  CAS  Google Scholar 

  15. Laurent G, Félidj N, Grand J, Aubard J, Lévi G, Hohenau A, Aussenegg FR, Krenn JR (2006) Raman scattering images and spectra of gold ring arrays. Phys Rev B 73:245417

    Article  Google Scholar 

  16. Félidj N, Truong SL, Aubard J, Levi G, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2004) Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. J Chem Phys 120:7141

    Article  Google Scholar 

  17. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface enhanced Raman scattering. Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  18. Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule Rhodamine 6G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106:8096

    Article  CAS  Google Scholar 

  19. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275:1102

    Article  CAS  Google Scholar 

  20. Camden JP, Dieringer J, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface enhanced spectroscopy and sensing. Acc Chem Res 41:1653

    Article  CAS  Google Scholar 

  21. Stiles P, Dieringer J, Shah NC, Van Duyne RP (2008) Surface enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601

    Article  CAS  Google Scholar 

  22. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, Springer Tracts in Modern Physics. Springer, Berlin

    Google Scholar 

  23. Gryczynski Z, Matveevan E, Calander N, Zhang J, Lakowicz JR, Gryczynski I (2007) Surface plasmon coupled emission, Surface plasmon nanophotonics. Springer, Berlin

    Google Scholar 

  24. Ushioda S, Sasaki Y (1983) Raman scattering mediated by surface-plasmon polariton resonance. Phys Rev B 27:1401

    Article  CAS  Google Scholar 

  25. Kurosawa K, Pierce RM, Ushioda S, Hemminger JC (1986) Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons. Phys Rev B 33:789

    Article  CAS  Google Scholar 

  26. Kittel C (2004) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  27. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  28. Tsang JC, Kirtley JR, Bradley JA (1979) Surface enhanced Raman spectroscopy and surface plasmons. Phys Rev Lett 43:772

    Article  CAS  Google Scholar 

  29. Girlando A, Philpott MR, Heitmann D, Swalen JD, Santo R (1980) Raman spectra of thin organic films enhanced by plasmon surface polaritons on holographic metal gratings. J Chem Phys 72:5187

    Article  CAS  Google Scholar 

  30. Knoll W, Philpott MR, Swalen JD, Girlando A (1982) Surface plasmon enhanced Raman spectra of monolayer assemblies. J Chem Phys 77:2254

    Article  CAS  Google Scholar 

  31. Arnold M, Bussemer P, Hehl K, Grabhorn H, Otto A (1992) Enhanced Raman scattering from benzene condensed on a silver grating. J Mod Opt 39:2329

    Article  CAS  Google Scholar 

  32. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Mamdouh E, Abdelsalam E, Bartlett PN, Russell AE (2005) Angle-resolved surface enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett 5:2262

    Article  CAS  Google Scholar 

  33. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845

    Article  CAS  Google Scholar 

  34. López-Rios T, Mendoza D, García-Vidal FJ, Sánchez-Dehesa J, Pannetier B (1998) Surface shape resonances in lamellar metallic gratings. Phys Rev Lett 81:665

    Article  Google Scholar 

  35. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  36. Laux E, Genet C, Ebbesen TW (2009) Enhanced optical transmission at the cutoff transition. Opt Exp 17:6920

    Article  CAS  Google Scholar 

  37. Gordon R, Brolo A (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933

    Article  Google Scholar 

  38. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8:1923

    Article  CAS  Google Scholar 

  39. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015

    Article  CAS  Google Scholar 

  40. Lucas BD, Kim JS, Chin C, Guo LJ (2008) Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays. Adv Mater 20:1129

    Article  CAS  Google Scholar 

  41. Alvarez-Puebla R, Cui B, Bravo-Vasquez J, Veres T, Fenniri H (2007) Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J Phys Chem C 111:6720

    Article  CAS  Google Scholar 

  42. Li J, Iu H, Luk WC, Wan JTK, Ong HC (2008) Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays. Appl Phys Lett 92:213106

    Article  Google Scholar 

  43. Space Nanotechnology Laboratory, Massachusetts Institute of Technology, Cambridge, Boston, USA. http://snl.mit.edu/

  44. O’Reilly TB, Smith HI (2008) Linewidth uniformity in Lloyd’s mirror interference lithography systems. J Vac Sci Technol B 26:2131

    Article  Google Scholar 

  45. Baltog I, Primeau N, Reinisch R, Coutaz JL (1995) Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the Stokes signal of 104. Appl Phys Lett 66:1187

    Article  CAS  Google Scholar 

  46. Baltog I, Primeau N, Reinisch R, Coutaz JL (1996) Observation of stimulated surface enhanced Raman scattering through grating excitation of surface plasmons. JOSA B 13:656

    Article  CAS  Google Scholar 

  47. Kahl M, Voges E (2000) Analysis of plasmon resonance and surface enhanced Raman scattering on periodic silver structures. Phys Rev B 61:14078

    Article  CAS  Google Scholar 

  48. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932

    Article  CAS  Google Scholar 

  49. Penninkhof JJ (2006) Tunable plasmon resonances in anisotropic metal nanostructures, Ph.D. thesis, Utrecht University

    Google Scholar 

  50. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779

    Article  CAS  Google Scholar 

  51. RSoft Design Group, Inc., New York, USA. http://www.rsoftdesign.com/

  52. Chan CY, Li J, Xu JB, Ong HC (2009) The dependence of surface enhanced Raman scattering on the groove size of one-dimensional metallic gratings. MRS Spring Meeting, San Francisco

    Google Scholar 

  53. Lévêque G, Martin OJF, Weiner J (2007) Transient behavior of surface plasmon polaritons scattered at a subwavelength groove. Phys Rev B 76:155418

    Article  Google Scholar 

  54. Chen C, Hutchison JA, Clemente F, Kox R, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P (2009) Direct evidence of high spatial localization of hot spots in surface enhanced Raman scattering. Angew Chem Inter Ed 48:9932

    Article  CAS  Google Scholar 

  55. Lei DY, Wan JTK, Ong HC (unpublished work)

    Google Scholar 

  56. Skigin DC, Depine RA (1999) Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes. Phys Rev E 59:3661

    Article  CAS  Google Scholar 

  57. Fujimaki H, Suzuki Y, Hatta A (1994) Raman scattering from Ag metal gratings coated with p-nitrobenzoic acid films. J Raman Spec 25:303

    Article  CAS  Google Scholar 

  58. García de Abajo FJ (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79:1267

    Article  Google Scholar 

  59. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114

    Article  Google Scholar 

  60. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667

    Article  CAS  Google Scholar 

  61. Li J, Xu JB, Ong HC (2009) Hole size dependence of forward emission from organic dyes coated with two-dimensional metallic arrays. Appl Phys Lett 94:241114

    Article  Google Scholar 

  62. Gordon R, Brolo AG, Sinton D, Kavanagh KL (2010) Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser Photon Rev 4:311

    Article  CAS  Google Scholar 

  63. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049

    Article  CAS  Google Scholar 

  64. Chan CY, Xu JB, Waye MY, Ong HC (2010) Angle resolved surface enhanced Raman scattering (SERS) on two-dimensional metallic arrays with different hole sizes. Appl Phys Lett 96:033104

    Article  Google Scholar 

  65. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  Google Scholar 

  66. Ropers C, Park DJ, Stibenz G, Steinmeyer G, Kim J, Kim DS, Lienau C (2005) Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys Rev Lett 94:113901

    Article  CAS  Google Scholar 

  67. Kim DS, Hohng SC, Malyarchuk V, Yoon YC, Ahn YH, Yee KJ, Park JW, Kim J, Park QH, Lienau C (2003) Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys Rev Lett 91:143901

    Article  CAS  Google Scholar 

  68. Genet C, van Exter MP, Woerdman JP (2003) Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt Comm 225:331

    Article  CAS  Google Scholar 

  69. Gao H, Henzie J, Lee MH, Odom TW (2008) Screening plasmonic materials using pyramidal gratings. Proc Natl Acad Sci 105:20146

    Article  CAS  Google Scholar 

  70. Iu H, Li J, Ong HC, Wan JTK (2008) Surface plasmon resonance in two-dimensional nanobottle arrays. Opt Exp 16:10294

    Article  CAS  Google Scholar 

  71. Li J, Iu H, Wan JTK, Ong HC (2009) The plasmonic properties of elliptical metallic hole arrays. Appl Phys Lett 94:033101

    Article  Google Scholar 

  72. Sauvan C, Billaudeau C, Collin S, Bardou N, Pardo F, Pelouard J-L, Lalanne P (2008) Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array. Appl Phys Lett 92:011125

    Article  Google Scholar 

  73. Collin S, Sauvan C, Billaudeau C, Pardo F, Rodier JC, Pelouard JL, Lalanne P (2009) Surface modes on nanostructured metallic surfaces. Phys Rev B 79:165405

    Article  Google Scholar 

  74. Coe JV, Rodriguez KR, Teeters-Kennedy S, Cilwa K, Heer J, Tian H, Williams SM (2007) Metal films with arrays of tiny holes: spectroscopy with infrared plasmonic scaffolding. J Phys Chem C 111:17459

    Article  CAS  Google Scholar 

  75. Catrysse PB, Shin H, Fan SH (2005) Propagating modes in subwavelength cylindrical holes. J Vac Sci Technol 23:2675

    Article  CAS  Google Scholar 

  76. Li J, Iu H, Lei DY, Wan JTK, Xu JB, Ho HP, Waye MY, Ong HC (2009) Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays. Appl Phys Lett 94:183112

    Article  Google Scholar 

  77. Muller R, Malyarchuk V, Lienau C (2003) Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes. Phy Rev B 68:205415

    Article  Google Scholar 

  78. Lei DY, Li J, Fernández-Domínguez AI, Ong HC, Maier SA (2010) Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays. ACS Nano 4:432

    Article  CAS  Google Scholar 

  79. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003

    Article  CAS  Google Scholar 

  80. Yang H, Liu Y, Liu Z, Yang Y, Jiang J, Zhang Z, Shen G, Yu R (2005) Raman mapping and in-situ SERS spectroelectrochemical studies of 6-Mercaptopurine SAMs on the gold electrode. J Phys Chem B 109:2739

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chinese University of Hong Kong (CUHK) through the RGC Competitive Earmarked Research Grants (402807, 402908, and 403308) and the Shun Hing Institute of Advanced Engineering (BME-p2-08). The authors thank D.Y. Lei, A.I. Fernández-Domínguez, and S.A. Maier from Imperial College, London, and J.T.K. Wan and P.M. Hui from CUHK for valuable discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, C.Y., Li, J., Ong, H.C., Xu, J.B., Waye, M.M.Y. (2012). Angle-Resolved Surface-Enhanced Raman Scattering. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_1

Download citation

Publish with us

Policies and ethics