Skip to main content

Moisture separation

  • Chapter
Multiphase Flow Dynamics 5
  • 2382 Accesses

Abstract

Chapter 9 is devoted to the basics of designing of moisture separation. First the importance of knowing the characteristic spectra of the moisture is underlined for proper analysis. Then some simple methods for computation of the efficiency of the separation are given for cyclone type and vane type. Different ideas based on different complexity are presented for description of the velocity field: the Kreith and Sonju solution for the decay of turbulent swirl in pipes; the potential gas flow in vanes; description of the trajectory of particles in a known continuum field; the computational fluid dynamics (CFD) analyses of cyclones; the CFD analyses of vane separators. Then several experiments are collected from the literature for boiling-water reactor cyclones, pressurized-water reactor steam generator cyclones, other cyclone types, and vane dryers. In several cases the success of different methods is demonstrated by comparisons with data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseenko, S.V., Nakoryakov, V.E., Pokusaev, B.G.: Wave flow of liquid films. Begell House, New York (1996)

    Google Scholar 

  • Alexandrovich, S.V., Truchniy, A.D.: Basic directions of the modernization and performance increase of the thermal and mechanical equipment of the secondary side of the power units of NPPs, Moscow, МНТК-2010 (2010) (in Russian)

    Google Scholar 

  • Algifri, A.H., Bhardwaj, R.K.: Prediction of the heat transfer for decaying turbulent swirl flow in a tube. Int. J. Heat Mass Transfer 28(9), 1637–1643 (1985)

    Article  MATH  Google Scholar 

  • Bürkholz, A.: Droplet separation, VCH Verlagsgeselschaft mbH (1989)

    Google Scholar 

  • Burkov, B.K., Gostev, D.G., Hrunic, A.H., Belousov, V.D., Govorov, A.S.: Rasrabotka I izsledovanie konstrukcij separatorov vlajnogo para. Teploenergetica (9), 57–59 (1999)

    Google Scholar 

  • Carson, W.R., Williams, H.K.: Method of reducing carryover and reducing pressure drop through a steam separator, EPRI Report NP-1607 (1980)

    Google Scholar 

  • Chaki, M., Murase, M.: Evaluation of the sensitivity of a two-phase flow model for steam separator analysis. In: 14th International Conference on Nuclear Engineering, Miami, FL, ICONE 14-89507, July 17-20 (2006)

    Google Scholar 

  • Chen, H.-P., Lin, Z.-J., Liu, D.-C., Wang, X.S., Rhodes, M.J.: A down-exhaust cyclone separator. Ind. Eng. Chem. Res. 38, 1605–1610 (1999)

    Article  Google Scholar 

  • Crowe, C.T., Pratt, D.T.: Analysis of the flow field in cyclone separators. Comput. Fluids 2, 249–260 (1974)

    Article  MATH  Google Scholar 

  • Dibelius, G., Dörr, A., Ederhof, A., et al.: Erfahrungen mit der Bestimmung der Dampffeuchte bei den Abnahmeversuchen im Kernkraftwerk Biblis. VGB Kraftwerkstechnik 57(9), 610–619 (1977)

    Google Scholar 

  • Detsch, M.E., Philiphoff, G.A.: Gasodinamika dwihfasnyh sred, Moscow, Energoisdat (1981) (in Russian)

    Google Scholar 

  • Fadda, D., Taylor, D., Greis, I., Kornfeldt, H., Sjövall, H.: Nuclear steam dryers optimized by computational and experimental fluid dynamics. In: Proceedings of ICONE12, 12th International Conference on Nuclear Engineering, Arlington, VA, April 25-29 ICONE12-49457

    Google Scholar 

  • Fujita, I., Machii, K., Sakata, T.: Development of high performance moisture separtor reheater. In: Proceedings of the ASME 2009 Power Conference POWER 2009, Albuquerque, NM, July 21-23 (2009) POWER2009-81092

    Google Scholar 

  • Galletti, C., Brunazzi, E., Tognotti, L.: A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels. Chem. Eng. Sci. 63, 5639–5652 (2008)

    Article  Google Scholar 

  • Gardner, G.C.: Separators of liquids from gases and vapors, HTFS Design Report 46, AERE R 9817 (1977)

    Google Scholar 

  • Gloger, M.: Probleme der Wassrabscheidung in Naßdampfturbinen, Brenstoff-Wärme-Kraft, Bd 22 Nr 9, pp. 417–460 (1970)

    Google Scholar 

  • Glustenko, N.N., et al.: Izsledovanie jeljusijnogo separatora. Energomashinostroenie (5), 37–38 (1972)

    Google Scholar 

  • Govan, A.H., Hewitt, G.F., Owen, D.G., Bott, T.R.: An improved CHF modelling code. In: 2nd UK National Heat Transfer Conference, Glasgow (1988)

    Google Scholar 

  • Hewitt, G.F., Govan, A.H.: Phenomenological modeling of non-equilibrium flows with phase change. In: Proceedings of 7th Eurotherm Seminar Thermal Non- Equilibrium in Two-Phase Flow (1989)

    Google Scholar 

  • Idelchik, I.E.: Handbook of hydraulic resistance, 3rd edn., Mumbai, Jaico (2003)

    Google Scholar 

  • Ikeda, H., et al.: Improvement of BWR steam separator with three-dimensional gas-liquid two-phase flow simulation method. In: 11th International Conference on Nuclear Engineering, ICONE 11-36486,Tokyo, Japan, April 20-23 (2003)

    Google Scholar 

  • Kall, H.: Entwicklung eines Tröpfchenabscheiders zur Dampftrocknung in Kernkraftwerken. Reihe 3(51) (May 1979)

    Google Scholar 

  • Kim, J.-I., Kim, M.-Y., Bae, H.-S., Lee, B.-E.: The performance of moisture separation system of a steam generator using computational fluid dynamics. In: Proceedings of ICAP 2005, Seoul, Korea, May 15-19 (2005); Paper 5048

    Google Scholar 

  • Kolev, N.I.: Controlling the moisture content in the steam by using nozzles in BWRS. In: 11th International Conference on Nuclear Engineering, ICONE 11, Keio Plaza Inter-Continental, Shinjuku, Tokyo, Japan, April 20-23, ICONE11-36306; ETPFG, European Two-Phase Flow Group Meeting, Norway; 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10) Seoul, Korea, October 5-9 (2003)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 2. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  • Koopman, H.: Analytical approximation of vane separator efficiencies. In: 48th European Two-Phase Flow Group Meeting, June 28-30, Brunel University, London (2010)

    Google Scholar 

  • Kreith, F., Sonju, O.K.: The decay of turbulent swirl in pipe. J. Fluid Mech. 2(2), 257–271 (1965)

    Article  Google Scholar 

  • KWU, KKB-Zusammenstellung der Ergebnisse der Abscheider- Trockner- Test in Dampf-Wasser-Versuchstand, Großwelzheim (1973)

    Google Scholar 

  • KWU, Verteilung des Tropfenmassenstroms über den Tropfendurchmesser am Austritt aus der HD-Turbine, Technischer Bericht Nr 74035, KWU Mühlheim (1974)

    Google Scholar 

  • Li, J., Huang, S., Wang, X.: Numerical study of steam-water separator with wave-type vanes. Chin. J. Chem. Eng. 15(4), 492–498 (2007)

    Article  Google Scholar 

  • Loeb, G., Taylor, D., Yarden, A.L.: Alcommonwealth Edison upgrading moisture separators in four older NPP units – Gaining 11 MWe in each of the first two (2002), http://www.babcockpower.com/pdf/tei-12.pdf

  • Manson, S.J., Canaan, R.E., Klein, D.E.: The development and benchmarking of an analytical moisture separation model for BWRs. In: ASME/JSME Nucl. Eng. Conf., vol. 1, pp. 47–53 (1993)

    Google Scholar 

  • Nakao, T., Nagase, M., Aoyama, G., Murase, M.: Development of simplified wave-type vane in BWR steam dryer and assessment of vane droplet removal. J. Nucl. Sci. Technol. 36(5), 424–432 (1999)

    Article  Google Scholar 

  • Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. Zeitschrift VDI 60, 541–546 (1916)

    Google Scholar 

  • Owen, G.D., Hewitt, G.F.: An improved annular two-phase flow model. In: 3rd BHRA Lut Conf. in Multiphase Flow, The Hague (1987)

    Google Scholar 

  • Patentschrift, no 23 36 447 des Deutschen Patentamtes, (February 2, 1976)

    Google Scholar 

  • Philiphoff, G.A., Povarov, O.A.: Separazii vlagi v turbinah AES, Moscow, Energija (1980)

    Google Scholar 

  • Phillips, H., Deakin, A.W.: Measurements of the collection efficiency of various demister devices. In: Proc. 4th Annular Meeting of Aerosol Society, Loughborough, UK, pp. 169–174 (1990)

    Google Scholar 

  • Povarov, O.A., Vasil’chenko, E.G., Randin, V.H.: Izvestija Vyshich Uchebnych Zaveenij. Energetika 10, 73–78 (1976)

    Google Scholar 

  • Powersep: Mehr Leistung durch zusätzlichen Vorabscheider Powersep auf der Sekundeärseite. Adv. Nucl. Power (3) (February 2002)

    Google Scholar 

  • Regehr, U.: Mechanische Reinigung heterogener Gassysteme mit einem neuartigen Tröpfchenabscheider, Chemie-Ing-Technik, Bd 39, Heft 19 (1967)

    Google Scholar 

  • Reyes-Gutiérrez, M.A., Rojas-Solórzano, L.R., Marín-Moreno, J.C.: Eulerian-eulerian modeling of disperse two-phase flow in a gas-liquid cylindrical cyclone. J. Fluids Eng. 128(4), 832 (2006)

    Article  Google Scholar 

  • Ryjkov, S.B., Ershov, V.V., Albantov, A.K.: Issledovanija teplo- i masootdaci pri dvijenii dispersnoj gazojidkostnoj smesi v krivolinejnom separirujustem kanale. Teploenergetika 9, 79–83 (1974)

    Google Scholar 

  • Schadel, S.A., Leman, G.W., Binder, J.L., Hanratty, T.J.: Rates of atomization and deposition in vertical annular flow. Int. J. Multiphase Flow 16(3), 363–374 (1990)

    Article  MATH  Google Scholar 

  • Smith, R.V., Azzopardi, B.J.: Summary of reported droplet size distribution data in dispersed two-phase flow. NUREG/CR-0476 (October 1978)

    Google Scholar 

  • YuL, S., Popchenkov, I.N., Burkat, V.S.: Determining the optimum cross-section of a venetian-blind separator. Translated from Khimicheskoe I Neftenoe Machinostroenie 12, 1–3 (1966)

    Google Scholar 

  • Steenberger, W.: Turbulent flow in a pipe with swirl, PhD thesis, Eindhoven University of Technology (1995)

    Google Scholar 

  • Stewart, A.C., Chamberiain, N.P., Irshad, M.: A new approach to gas-liquid separa-tion. In: European Petroleum Conference, SPE 50685 (1998)

    Google Scholar 

  • Taitel, Y., Barnea, D., Dukler, A.E.: Modeling flow pattern transition in vertical tubes. AIChEJ 22(3), 345 (1980)

    Article  Google Scholar 

  • Trojanovski, B.M.: Turbiny dlja atomnyh elektrostancii, Moskva, Energia (1978) (in Russian)

    Google Scholar 

  • Ueda, T.: Study on entrainment rate and droplet size in annular two-phase flow. Bull JSME 45, 127–138 (1979)

    Google Scholar 

  • Ushiki, K., Nashizawa, E., Beniko, E., Linoya, K.: Performance of a droplet separator with multistage rows of flat blades. J. Chem. Eng. Japan 15, 292–298 (1982)

    Article  Google Scholar 

  • Verlaan, C.: Performance of novel mist eliminators, PhD thesis, Delft University (1991)

    Google Scholar 

  • Wolf, R.H., Moen R.H.: Advances in steam-water separators for BWRs. ASME 73-WA/Pwr-4 (1973)

    Google Scholar 

  • Xiamoto, W., Suyi, H., Jia, L.: The research on the steam-water separator with corrugated plates. In: 3rd International Symposium on Two-Phase Flow Modeling and Ex-perimentation, Pisa (September 22-24, 2004)

    Google Scholar 

  • Yoneda, K., Inada, F., Yasuo, A.: Investigation of flow characteristics in gas-liquid separator air-water two-phase flow experiment. In: 11th International Conference on Nuclear Engineering, ICONE 11-36300, Tokyo, Japan (April 20-23, 2003)

    Google Scholar 

  • Zaichik, L.I.: Estimation of time between particle collisions in turbulent flow. High Temp. 36(3) (1998) (translation from Russian)

    Google Scholar 

  • Zubov V.P.: Study of pressure losses in wyes during the separation and merging of flows, thesis, Moscow (1978)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Moisture separation. In: Multiphase Flow Dynamics 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20601-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20601-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20600-9

  • Online ISBN: 978-3-642-20601-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics