Skip to main content
  • 2495 Accesses

Abstract

The art in the steam generator design is by having specified primary fluid temperature, pressure and mass flow to design a vapor production with the lowest possible content on droplets at highest possible pressure and mass flow. On this way technical discoveries like introduction of economizers, redirection of separated water into the natural circulation loop using appropriate low pressure loss high efficiency separators etc. are inevitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altshuller, A.: NPP-2006 with reactor VVER-1200/491 (2006), http://www.reak.bme.hu/MTAEB/files/konferencia_20070308/tpresent/Atomstroyexport_03_SPbAEP_NPP-2006.pdf

  • APR1400 Advanced power reactor 1400 (August 10, 2009a), http://www.ats-fns.fi/archive/APR1400_Design_Characteristics.pdf

  • APR1400, Plant Description, Korea Hydro & Nuclear Power (2009b), http://www.khnp.co.kr/nutech/upload/APR1400%20Plant%20Description.doc

  • AREVA, EPR, Areva brochure (2007)

    Google Scholar 

  • AREVA, ATMEA1, Relible generation III+ solution world wide, AREVA brochure (2009)

    Google Scholar 

  • ATMEA1 ATMEA1 – The mid-sized Generation III+ PWR you can rely on, Conference ETE – Siófok – Hungary (June 3, 2009)

    Google Scholar 

  • Aubry, S., Cahouet, J., Nicolas, G., Niedergang, C.: A finite volume approach for 3D two phase flows in tube bundles the THYC code. In: Proceedings of the Fourth International Topical Meeting an Nuclear Reactor Thermal – Hydraulics, pp. 1247–1253 (1989)

    Google Scholar 

  • B&W (2009), http://www.babcock.com/bwc/nuclear_division/nuclear_broach.html

  • Barré, B.: Futur du Nucléaire Nucléaire du Futur, Séminaire SLC (January 2006)

    Google Scholar 

  • Bergunker, V.D.: 7th International Seminar on Horizontal Steam Generators, Podolsk, pp. 70–87 (2006)

    Google Scholar 

  • Bibusmetals (2010), www.bibusmetals.ch

  • Böck, H.: WWER/ VVER (Soviet designed Pressurized Water Reactors Reactors), Lecture module 04, Vienna University of Technology /Austria (2009), http://www.ati.ac.at/fileadmin/files/research_areas/ssnm/nmkt/04_WWER_Overview.pdf

  • Bussy, B., Dague, G., Slama, G.: Starting up of new steam generator on N4 1450 MWe plants. In: Proc. 3th International Conference Steam Generators and Heat Exchanger, Toronto, Ontario, Canada (1998)

    Google Scholar 

  • Carlucci, L.N., et al.: Thermal hydraulic analysis of the Westinghouse Model 51 steam Generator, EPRI NP2683 (1982)

    Google Scholar 

  • Carson, W.R., Williams, H.K.: Methods of reducing carry-over and reducing pressure drop through steam separators, EPRI Final Report NP1607 (November 1980)

    Google Scholar 

  • Clement R.: PWRs Systems and Operation (August 9, 2009), http://research.edf.com/fichiers/fckeditor/File/EDF%20RD/Printemps2008/18-11MAI/PWRs%20basics.pdf

  • Chisholm, D.: Two phase flow in pipelines and heat exchangers. George Godwin, London (1983)

    Google Scholar 

  • Cumo, M., Naviglio, A. (eds.): Thermal hydraulic design of components for steam generation plants. CRC Press, Inc., Boca Raton (1991)

    Google Scholar 

  • Cummins, E.: CSIS Nuclear Conference (June 26, 2008)

    Google Scholar 

  • Dagnall, S.: AP1000 Technology for today’s market practical options for a nuclear renaissance Institute of Physics, London (June 13, 2006)

    Google Scholar 

  • Daehnerst, B.: The Westinghouse AP1000 reactor – and overview, Schweizerische Geselschaft der Kernfachleute (March 6, 2007)

    Google Scholar 

  • Doosan Heavy Industries & Construction, Creating values for the world nuclear power plants (2009)

    Google Scholar 

  • Doosan: Steam Generator, Doosan Heavy Industries & Construction, DH0604 (2009b), http://www.doosanheavy.com/2/pdf/STEAM%20GENERATOR.pdf

  • Dragunov, Y., Ryzhov, S., Mokhov, V.: Development of WWER-1200 reactor plant for NPP of large series NPP-2006 (March 8, 2007)

    Google Scholar 

  • Dueymes, E.: Wet steam flows in industrial large-diameter pipes: flow rate, moisture and pressure drop measurements. Int. J. Multiphase Flow 6(6), 901–909 (1989)

    Article  Google Scholar 

  • EPR, The European Pressurized Water Reactor called EPR, Nuclear Engineering International (October 1997)

    Google Scholar 

  • EPR, Druckwasserreaktor 1600 MWe (EPR) Kernkraftwerk Olkiluoto 3, Finnland, Funktionsbeschreibung mit Poster, Broshure, Bestell-Nr.: ANP:G-46-V2-07-GER Printed in Germany 500115H WS 03076. K.-Nr. 309 (2009)

    Google Scholar 

  • Fournier, R., Thibodeau, M., French, C.T.: Measurement of steam generator or reactor vessel moisture carryover using a non-radioactive tracer. In: Proc. of the 17th Int. Conf. on Nuclear Engineering, ICONE17, Brussels, Belgium, July 12-16 (2009)

    Google Scholar 

  • Fortino, R.T., Oberjohn, W.J., Rice, J.G., Cornelius, D.K.: Thermal-Hydraulic Analyses of Once Through Steam Generators. EPRI NP-1431 (1980)

    Google Scholar 

  • Gautier, D., Boissier, A.: Les pertes de charges et le transfert thermique cote gaz dans les échangeurs tubes lisses, a circulations orthogonales. Bulletin de la Direction des Etudes et Recherches d’EDF no. 2/3 (1971)

    Google Scholar 

  • Gluhov, G.: Jadreni energiyni reactori, Tehnika, Sofia, Bulgaria (1979)

    Google Scholar 

  • Green, S.J.: Thermal hydraulic and corrosion aspects of PWR steam generator problems. Heat Trans. Eng. 9, 1 (1988)

    Article  Google Scholar 

  • Green, S.J., Hetstroni, G.: PWR steam generators. Int. J. of Multiphase Flow 21(suppl.), 1–97 (1995)

    Article  Google Scholar 

  • Groeneveld, D.C.: Post-dryout heat transfer at reactor operating conditions. In: Nat. Topical Meet. Water Reactor Safety, Salt Lake City, Utah, American Nuclear Society, Conf. 730304, Rept. AECL-4513, March 26-28, Atomic Energy of Canada Ltd. (1977)

    Google Scholar 

  • Groeneveld, D.C., et al.: The 1995 look-up table for critical heat flux in tubes. Nuclear Engineering and Design 163, 1–23 (1996)

    Article  Google Scholar 

  • Groeneveld, D.C., Shan, J.Q., Vasi, A.Z., Leung, L.K.H., Durmayaz, A., Yang, J., Cheng, S.C., Tanase, A.: The 2005 CHF look-up table. In: The 11th Int. Top. Meeting on Nuclear Thermal-Hydraulics (NURETH11), Avignon, France, October 2-6 (2005)

    Google Scholar 

  • Gouirand, J.M.: CLOTAIRE Program – Thermal hydraulic test results in the straight part of the tube bundle. CEA/DTE/STRE/LGV/89/89/961 1 & 2 (1989)

    Google Scholar 

  • Gouirand, J.M.: CLOTAIRE International Program – Final report – part 1 – Thermalhydraulic, CEA/DER/SCC/LTDE/91 /012 (1991)

    Google Scholar 

  • Hassan, Y.A., Morgan, C.D.: Steady-state and transient prediction of a 19-tube once-through steam generator using RELAP5/MODI. Nucl. Tech. 60, 143–150 (1980)

    Google Scholar 

  • Hassan, Y.A., Morgan, C.D.: Comparison of Lehigh 3 × 3 rod bundle post-CHF data with the predictions of RELAP5/MOD2. In: American Nuclear Society and Atomic Industrial Forum Joint Meeting, Washington, DC (1986)

    Google Scholar 

  • IAEA-21, WWER-1000 reactor simulator, Workshop material. International Atomic Energy Agency, Training course series No. 21 (2003)

    Google Scholar 

  • INR: Russian scientific centre “Kurtschatov Institute”, Institute of Nuclear Reactors (2009), http://www.inr.kiae.ru/ie.htm

  • John, B., Dharne, S.P., Ghadge, S.G.: Evolution of 434 MWth steam generator to 540 MWth. In: The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Paper: 332 Popes’ Palace Conference Center, Avignon, France, October 2-6 (2005)

    Google Scholar 

  • Keeton, L.W., Singhal, A.K., Irani, A.: A THOS3 code analysis of tube plugging effects an the thermal-hydraulic characteristics of a once-through steam generator. ASME 86-WA/NE-4 (1986)

    Google Scholar 

  • Keeton, L.W., Singhal, A.K., Srikantiah, G.: ATHOS3: A computer program for thermal-hydraulic analysis of steam generators. vol. 1: Mathematical und Physical Models und Method of Solution; vol. 2: Programmer’s Manual; Vol. 3: User’s Manual. EPRI NP 4604-CCM, vol. 1-3, Revision 1 (1990)

    Google Scholar 

  • Lee, J.Y., No, H.C.: Three-dimensional two-fluid code for U-tube steam generator thermal design analysis. In: Proc. 2nd International Topical Meetings an Nuclear Power Plant Thermal Hydraulics and Operations, Tokyo, Japan, 3-21 –3-27 (April 1986)

    Google Scholar 

  • Lukasevich, B.I., Trunov, N.B., Likasevich, B.I., Dragunov Y.G., Dividenko, S.E.: Steam generators for VVER reactor facilities for nuclear power plants. IKTs Akademkniga, Moscow (2004)

    Google Scholar 

  • Maddox, J., Koontz, F.: WATTS BAR Nuclear Power Plant Fundamentals Workshop (July 10, 2000)

    Google Scholar 

  • Margulowa, T.C.: Kernkraftwerke, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1976)

    Google Scholar 

  • Miheev, M.A., Miheeva, I.M.: Osnovy teploperedachi, Energiya, Moskva (1973)

    Google Scholar 

  • MNP Molybdenum and Nuclear Power – Part II (2009), http://www.sprottmoly.com/pdf/NuclearMoly_2_.pdf

  • Patankar, S.V., Spalding, D.B.: A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers. Heat Exchanger Design and Theory Source Book, Scripta, Washington, DC (1976)

    Google Scholar 

  • OKB, Reactor facilities for AES with VVER-1000 (2008), http://www.gidropress.podolsk.ru/publications/booklets/wwer1000_ru.pdf

  • Paulson, K.: Design Feature of US-APWR for Global Deployment, UAP-HF-07115 (July 21, 2008)

    Google Scholar 

  • Pioro, I.L., Duffey, R.B.: Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power-Engineering Applications. Elsevier, Amsterdam (2007)

    Book  Google Scholar 

  • Prasser, H.-M.: Reactor technology: Complex 1 Design of Light Water Reactors, Lecture notes – an Internet publication, Eidgenössische Technische Hochschule Zürich, Swiss Federal Institute of Technology Zürich (2009)

    Google Scholar 

  • Preuß, H.-J.: Entwiklingstendenzen und Zukunftsaufsichten. In: Oldekop, W. (ed.) Druckwasserreaktoren für Kernkraftwerke, ch. 14, p. 348. Verlag Karl Thiemig, München (1974)

    Google Scholar 

  • Procaccia, H., et al.: Tests of types 51A and 51M steam generators at Bugey-4 and Tricastin-1 Nuclear Power Plants, EPRI NP-2689 (1982)

    Google Scholar 

  • PWR, Pressurized water reactor, Siemens Brochure, Order No. A19100-U01-A148-V1-7600, Germany (March 1992)

    Google Scholar 

  • Riboud, P.M., Brugeille, G.: Validation expérimentale du calcul thermo hydraulique bidimensionnel des échangeurs tubulaires. In: 22rad IAHR Congres, Lausanne, Switzerland, August 31-September 4 (1987)

    Google Scholar 

  • RPWR, Russian pressurized water reactors VVER-440 & VVER-1000, internet publication (2009)

    Google Scholar 

  • Rütz, J.: Messung der Frischdampffeuchte nach dem Drosselverfahren, Kernenergie, Jahrgang 16 Heft 1 S, 13–19 (1973)

    Google Scholar 

  • Rust, J.H., Weaver, L.E.: Nuclear power safety. Pergamon Press, New York (1976)

    Google Scholar 

  • Ryjkov, S.B., et al.: New projects for VVER power plants of medium size, International forum Atomexpo 2009, Moscow, CVK Expocenter (2009), (in Russian), Рыжов С.Б., Мохов В.А., Никитенко М.П., Четвериков А.Е., Щекин И.Г. (26-28 мая 2009) Новые проекты реакторных установок ВВЭР средней мощности, Международный форум «АТОМЭКСПО 2009» г. Москва, ЦВК «Экспоцентр http://www.rosatom.ru/common/img/uploaded/for_PDF-news/Atomexpo/7_Chetverikov_Prezentatsiya_27.05.09_Atomekspo.ppt

  • SGSS Steam Generators and Steam Separators (2009), http://www.nucleartourist.com/systems/sg.htm

  • Singhal, A.K., Keeton, L.W., Srikantiah, G.: Thermal-Hydraulic Analysis of U-Tube and Once Through Steam Generators. In: AIChE Symposium Series 225, vol. 79, p. 331 (1983)

    Google Scholar 

  • Singhal, A.K., Keeton, L.W., Przekwas, A.J., Weems, J.S.: ATHOS A Computer Program for Thermal Hydraulic Analysis of Steam Generators, vol. 4: Applications, EPRI NP-2698-CCM (1984)

    Google Scholar 

  • Singhal, A.K., Srikantiah, G.: A review of thermal hydraulic analysis methodology for PWR steam generators and ATOS3 code applications. Prog. Nucl. Energy 25(1), 7–70 (1991)

    Article  Google Scholar 

  • Schwarz, T., Bouecke, R.: Utilization of the ATHOS code for split flow economizer and flow distribution plate calculations of steam generators. In: ASME Winter Annual Meeting Proc. HTD, vol. 51, pp. 57–69 (1985)

    Google Scholar 

  • Smolin, V.N., Shpanskii, S.V., Esikov, V.I., Sedova, T.K.: Method of calculating burnout in tubular fuel rods when cooled by water and a water-steam mixture. Teploenergetika 24(12), 30–35 (1977)

    Google Scholar 

  • Solomon, Y., Paine, J.P.N., Steininger, D.A., Williams, C.L.: Principles of steam generator degradation, Steam Generator Reference Book, ch. 5, EPRI (1985)

    Google Scholar 

  • Ramu, K., Weisman, J.: A method for the correlation of transition boiling heat transfer data. In: Heat Transfer 1974, 5th Int. Heat Transfer Conf., Tokyo, vol. 4, pp. 160–164 (1974)

    Google Scholar 

  • Ryjkov, S.B., et al.: New projects for VVER power plants of medium size, International forum Atomexpo 2009, Moscow, CVK Expocenter, in Russian: Рыжов С.Б., Мохов В.А., Никитенко М.П., Четвериков А.Е., Щекин И.Г. (26-28 мая 2009) Новые проекты реакторных установок ВВЭР средней мощности, Международный форум «АТОМЭКСПО 2009» г. Москва, ЦВК «Экспоцентр (2009), http://www.rosatom.ru/common/img/uploaded/for_PDF-news/Atomexpo/7_Chetverikov_Prezentatsiya_27.05.09_Atomekspo.ppt

  • Trunov, N.B., Denisov, W., Kharchenko, S.A., Likasevich, B.I.: Taking account of operating experience when developing new designs for steam generators for nuclear power plants with VVER. Teploenergetica (1), 38–42 (2006)

    Google Scholar 

  • Trunov, N.B., Likasevich, B.I., Veselov, D.O., Yu, G.: Steam generators – horizontal or vertical (which type should be used in nuclear power plants with VVER?). Atomic Energy 105(3), 165–174 (2008); translated from Atomnaya Energiya  105(3), 127–135 (September 2008)

    Article  Google Scholar 

  • US-APWR Nuclear Energy Systems Business Presentation Meeting Business Meeting Document 1, Nuclear Energy Systems Headquarters, Nuclear Headquarters Mitsubishi Heavy Industries (July 23, 2007d)

    Google Scholar 

  • VVER-640, Reactor Plant with WWER-640 (V–407) for New Generation NPP Power Units (2009), http://www.gidropress.podolsk.ru/English/razrab_e.html

  • VVER-1500 Reactor Plant with WWER-1500 (V–448) for New Generation NPP Power Units (2009), http://www.gidropress.podolsk.ru/English/razrab_e.html

  • Wade, K.: Steam generation degradation and impact on continued operation of pressurized water reactors in the United States, Energy Information Administration. Electric Power Monthly, pp IX–XXI (August 1995)

    Google Scholar 

  • Wang, S.S., Srikantiah, G.: Numerical modeling of the phase separation processes in BWR and PWR steam separators. In: AIChE Symp. Series, vol. 81, p. 245 (1985)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Steam generators. In: Multiphase Flow Dynamics 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20601-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20601-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20600-9

  • Online ISBN: 978-3-642-20601-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics