Skip to main content

The “simple” steady boiling flow in a pipe

  • Chapter
Multiphase Flow Dynamics 5
  • 2221 Accesses

Abstract

Didactically, nuclear thermal hydraulics needs introductions at different levels of complexity by introducing step by step the new features after the previous ones have been clearly presented. The following two chapters serve this purpose. Chapter 3 describes mathematically the “simple” steady boiling flow in a pipe. The steady mass-, momentum-, and energy-conservation equations are solved at different levels of complexity by removing one after the other the simplifying assumptions. First the idea of mechanical and thermodynamic equilibrium is introduced. Then the assumption of mechanical equilibrium is relaxed. Then the assumption of thermodynamic equilibrium is relaxed in addition. In all cases, comparisons with experimental data give the evidence of the level of adequacy of the different levels of modeling complexity. The engineering relaxation methods are considered, followed by the more sophisticated boundary layer treatment without and with variable effective bubble size. Then an introduction to the saturated- flow boiling heat transfer is given and the accuracy of the methods is demonstrated by comparisons with experiments. The hybrid method of combining the asymptotic method with boundary layer treatment allowing for variable effective bubble size is also presented. Finally, the idea of using the separated momentum equations and bubble dynamics is introduced and again its adequacy is demonstrated by comparison with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achmad, S.I.: Raspredelenie srednomassovoj temperatury zidkosti I istinnogo obem-nogo parosoderzanie vodoi obogrevaemogo kanala s nedogrevom na vchode, Teplope-redaca, vol 4, Translated from “Axial distribution of bulk temperature and void fraction in heated channel with inlet subcooling. J. Heat Transfer 92, 595 (1970)

    Article  Google Scholar 

  • Andersen, J.G.M.: Interfacial shear for two-fluid models. Trans. ANS 41, 669–671 (1982)

    Google Scholar 

  • Avdeev, A.A.: Growth and condensation velocity of steam bubbles in turbulent flow. Teploenergetika 1, 53–55 (1986) (in Russian)

    Google Scholar 

  • Bankoff, S.G.: A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. J. Heat Transfer, Trans. ASME 82, 265–272 (1960)

    Google Scholar 

  • Bartolomei, G.G., Batashova, G.N., Brantov, V.G., et al.: Heat and mass transfer IV. In: Izd ITMO AN BSSR, Minsk, vol. 5, p. 38 (1980) (in Russian)

    Google Scholar 

  • Bartolomei, G.G., Brantov, V.G., Molochnikov, Y.S., et al.: An experimental investigation of true volumetric vapor content with subcooled boiling in tubes. Thermal Eng. 29(3), 132–135 (1982)

    Google Scholar 

  • Bennett, J.A.R., Collier, J.G., Pratt, H.R.C., Thornton, J.D.: Heat transfer to two phase gas-liquid systems, AERE–R–3159, Atomic Energy Research Establishment, Harwell, Berkshire (1959)

    Google Scholar 

  • Bennett, A.W., et al.: Heat transfer to steam-water mixtures flowing in uniformly heated tubes in which the critical heat flux has been exceeded. AERE-R5373 (1967)

    Google Scholar 

  • Bjornard, T.A., Grifith, P.: PWR blow-down heat transfer. In: Thermal and Hydraulic Aspects of Nuclear Reactor Safety, vol. 1, pp. 17–41. American Society of Mechanical Engineers, New York (1977)

    Google Scholar 

  • Borishanskii, V., Kozyrev, A., Svetlova, L.: Heat transfer in the boiling water in a wide range of saturation pressure. High Temp. 2(1), 119–121 (1964)

    Google Scholar 

  • Chen, J.C.: A correlation for film boiling heat transfer to saturated fluids in convective flow. ASME Publication-63-HT-34, pp. 2–6 (1963)

    Google Scholar 

  • De Jarlais, G., Ishii, M., Linehan, J.: Hydrodynamic stability of inverted annular flow in an adiabatic simulation. Trans. ASME, J. Heat Transfer 108, 85–92 (1986)

    Google Scholar 

  • Dittus, F.V., Boelter, L.M.K.: Heat transfer for automobile radiators of the tubular type. Univ. Calif. Publ. Eng. 2(13), 443 (1930)

    Google Scholar 

  • Egen, R.A., Dingee, D.A., Chastain, J.W.: Vapor formation and behavior in boiling heat transfer. AEC Report BMI–1167 (1957)

    Google Scholar 

  • Forster, H.K., Zuber, N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE J. 1(4), 531–535 (1955)

    Article  Google Scholar 

  • Friedel, L.: New friction pressure drop correlations for upward, horizontal, and downward two-phase pipe flow. Presented at the HTFS Symposium, Oxford (September 1979) (Hoechst AG Reference No. 372217/24 698)

    Google Scholar 

  • Groeneveld, D.C., Chen, S.C., Leung, L.K.H., Nguyen, C.: Computation of single and two-phase heat transfer rate suitable for water-cooled tubes and subchannels. Nucl. Eng. Des. 114, 61–77 (1989)

    Article  Google Scholar 

  • Hassan, Y.A.: Assessment of a modified interfacial drag correlation in two-fluid model codes. Presented at 1987 ANS Annual Meeting, ANS Trans., Dallas, Texas, vol. 54, pp. 211–212 (June 1987)

    Google Scholar 

  • Howarth, W.J.: Measurement of coalescence frequency in an agitated tank. AIChE J. 13(5), 1007–1013 (1967)

    Article  Google Scholar 

  • Ishii, M., Chawla, T.C.: Local drag laws in dispersed two-phase flow, NUREG/CR-1230, ANL-79-105 (December 1979)

    Google Scholar 

  • Ishii, M., Zuber, N.: Relative motion and interfacial drag coefficient in dispersed two-phase flow of bubbles, drops and particles, Paper 56 a. In: AIChE 71st Ann. Meet. Miami (1978)

    Google Scholar 

  • Kawara, Z., Kataoka, I., Serizawa, A., Ko, Y.J., Takahashi, O.: Analysis of forced con-vective CHF based on two-fluid and three-fluid model. Heat Transfer (1998); Proc. 11th IHTC, Kyongju, Korea, August 23-28, vol.  2, pp 103–108

    Google Scholar 

  • Kelly, J.E., Kao, S.P., Kazimi, M.S.: THERMIT-2: A two-fluid model for light water reactor sub-channel transient analysis. MIT Energy Laboratory Electric Utility Program, Report No MIT-EL-81-014 (April 1981)

    Google Scholar 

  • Kolev, N.I.: Do we have appropriate constitutive sets for sub-channel and fine-resolution 3D-analyses of two-phase flows in rod bundles? In: Reactor Physics and Nuclear and Biological Applications, Palais des Papes, Avignon, France, September 12-15. American Nuclear Society, LaGrange Park (2005)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, vol. 1. Springer, Berlin (2007a)

    MATH  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, vol. 2. Springer, Berlin (2007b)

    MATH  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, vol. 3. Springer, Berlin (2007c)

    MATH  Google Scholar 

  • Labunzov, D.A.: State of the art of the nuclide boiling mechanism of liquids. In: Heat Transfer and Physical Hydrodynamics, Moscow, Nauka, pp. 98–115 (1974) (in Russian)

    Google Scholar 

  • Levy, S.: Forced convection subcooled boiling – prediction of vapor volumetric fraction. Int. J. Heat Mass. Transfer 10, 951–965 (1967)

    Article  Google Scholar 

  • Maier, D., Coddington, P.: Validation of RETRAN-03 against a wide range of rod bundle void fraction data. ANS Trans. 75, 372–374 (1986)

    Google Scholar 

  • Nylund, D., et al.: Hydrodynamic and heat transfer measurements on a full-scale simulated 36-rod Marviken fuel element with uniform heat flux distribution. FRIG-2, Danish Atomic Energy Commission (1968)

    Google Scholar 

  • NUPEC, OECD/NRC Benchmark based on NUPEC BWR full-size fine-mesh bundle tests (BFBT), assembly specifications and benchmark database, Incorporated Administrative Agency, Japan Nuclear Energy Safety Organization, JNES-04N-0015 (October 4, 2004)

    Google Scholar 

  • Sabotinov, L.S.: Experimental investigation of void fraction in subcooled boiling for different power distribution laws along the channel, PhD thesis in Russian, Moscow (1974)

    Google Scholar 

  • Saha, P., Zuber, N.: Proc. Int. Heat Transfer Conf., Tokyo, Paper 134.7 (1974)

    Google Scholar 

  • Sani RleR, Down flow boiling and non-boiling heat transfer in a uniformly heated tube, University of California, URL-9023, Chemistry-Gen UC-4, TID-4500, 15th edn. (January 4, 1960)

    Google Scholar 

  • Sekoguchi, K., Nishikawa, K., Nakasatomi, M., Hirata, N., Higuchi, H.: Flow boiling in subcooled and low quality regions. Heat Transfer and Local Void Fraction B4.8, 180–184 (1972)

    Google Scholar 

  • Pierre, C.C.S.: Frequency-response analysis of steam voids to sinusoidal power modulation in a thin-walled boiling water coolant channel, Argon National Lab Report, ANL-7041 (1965)

    Google Scholar 

  • Thom, I.R.S., et al.: Boiling in subcooled water during up heated tubes or annuli. Proc. Inst. Mech. Eng. 180 (1965-1966)

    Google Scholar 

  • Wang, C.H., Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J. Heat Transfer 115, 659–669 (1993)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). The “simple” steady boiling flow in a pipe. In: Multiphase Flow Dynamics 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20601-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20601-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20600-9

  • Online ISBN: 978-3-642-20601-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics