Skip to main content

External cooling of reactor vessels during severe accident

  • Chapter
Multiphase Flow Dynamics 5
  • 2213 Accesses

Abstract

Chapter 16 is devoted to the so called external cooling of reactor vessels during severe accident. It is a technology allowing arresting the melt inside the vessel of some initial conditions are fulfilled. First the state of the art is presented. Then a brief description of the phenomenology leading to melt in the lower head is discussed: dry core melting scenario, melt relocation, wall attack, focusing effect. Brief mathematical model description is given appropriate for a set of model assumptions. The model describes: the melt pool behavior, the two-dimensional heat conduction through the vessel wall, the total heat flow from the pools into the vessel wall, the vessel wall ablation, the heat fluxes, the crust formation and the buoyancy driven convection. Solution algorithm is provided for a set of boundary conditions adequate for real situations. A summary of the state of the art regarding the critical heat flux for externally flowed lower head geometry is provided. On a several practical applications different effects are demonstrated: the effect of vessel diameter, the effect of the lower head radius, the effect of the relocation time, the effect of the mass of the internal structures. Varying some important parameters characterizing the process the difference between high powered pressurized- and boiling water reactor vessel behavior is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANS: ANS Standards Committee, Decay Energy Release Rates following Shutdown of Uranium-fueled Thermal Reactors, American Nuclear Society Draft Report: ANS-5.1(October 1971)

    Google Scholar 

  2. ANS: ANS Standards Committee, Decay Energy Release Rates following Shutdown of Uranium-fueled Thermal Reactors, American Nuclear Society Draft Report: ANS-5.1 (N18.6) (October 1973)

    Google Scholar 

  3. ANS: ANS Standards Committee, Decay Heat Power in Light Water Reactors American Nuclear Society Report: ANSI/ANS-5.1-1979 (August 1979)

    Google Scholar 

  4. ANS: ANS Standards Committee, Decay Heat Power in Light Water Reactors (Revision of ANSI/ANS-5.1-1979;R1985), American Nuclear Society Report: ANS-5.1(1994)

    Google Scholar 

  5. Asfa, F.J., Dhir, V.K.: Natural circulation heat transfer in volumetrically heated spherical pools. In: Proceedings of the Workshop on Large Molten Poll Heat Transfer, NEA/CSNI/R (94), vol. 11, pp. 199–205 (1994)

    Google Scholar 

  6. Asfa, F.Y., Frantz, B., Dhir, V.K.: Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. J. Heat Transfer 18(2), 31–37 (1996)

    Article  Google Scholar 

  7. Baehr, H.D., Stephan, K.: Wärme- und Stoffübertragung, vol. 4. Springer, Heidelberg (2004)

    Google Scholar 

  8. Bejan, A.: Convection Heat Transfer. Jon Wiley & Sons, New York (1984)

    MATH  Google Scholar 

  9. Benard, H.: Les tourbillons cellulaires dans une nappe liquide. Revue Générale des Sciences 1271, 1309–1328 (1900)

    Google Scholar 

  10. Bonnet, J.M.: Thermal hydraulic phenomena in corium pools: the BALI experiment, SARJ Meeting, Tokyo, Japan, (November 4-6, 1998)

    Google Scholar 

  11. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford Science Publications, Clarendon Press, Oxford (1996)

    Google Scholar 

  12. Chen, L.T.: Heat transfer to pool-boiling Freon from inclined heating plate, Lett. Lett. Heat Mass Transfer 5(2), 111–120 (1978)

    Article  Google Scholar 

  13. Cheung, F.B., Haddad, K.H.: Observation of the dynamic behavior of the two phase boundary layers in the SBLB experiments. In: Proceedings of Twenty-Second Water Reactor Safety Information Meeting, NUREG/CP-0140, Bethesda, Maryland, vol. 2, pp. 87–111 (October 24-26,1994)

    Google Scholar 

  14. Chu, T.Y., et al.: Ex-vessel boiling experiments: Laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention Part II: Reactor-scale boiling experiment of flooded cavity concept for in-vessel core retention. NED 169, 89–99 (1997)

    Google Scholar 

  15. Churchill, S.W., Chu, H.H.: Correlating equations for laminar and turbulent free convection from vertical plate. Int. J. Heat Mass Transfer, vol 18, 1323 (1975)

    Article  Google Scholar 

  16. DIN: Normenausschuss Kerntechnik im DIN, Berechnung der Nachzerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren, DIN-Norm 25 463, von Juli (1982)

    Google Scholar 

  17. DIN: Normenausschuss Kerntechnik im DIN, Berechnung der Nachzerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren, Nichtrezyklierte Brennstoffe, DIN-Norm 25–463, Beiblatt 1 zu Teil 1 von (May 1990)

    Google Scholar 

  18. Dinh, T.N., Tu, J.P., Theofanous, T.G.: Two-phase natural circulation flow in AP-1000 in-vessel retention ULPU-V facility experiments. In: Proceedings of ICAP 2004, Pittsburgh, PA USA, (June 13-17, 2004); Paper 4242

    Google Scholar 

  19. Dombrovskii, L.A., Zaichik, L.I., Zeigarnik, Y.A.: Numerical simulation of the strati-fied-corium temperature field and melting of the reactor vessel for severe accident in nuclear power station. Thermal Eng. 45(9), 755–765 (1998)

    Google Scholar 

  20. Dombrovskii, L.A., Zaichik, L.I., Zeigarnik, Y., Sidorov, A., Derevich, I.: The-plofizicheskie processy pri razrushenii aktivnoj zony VVER I vzaimodejstvii koriuma s korpusom reactora, Russian Academy of Science, pp. 2–431. IVTAN Association (1999); Preprint no 2-431

    Google Scholar 

  21. Esmaili, H., Khatib-Rahbar, M.: Analysis of the in-vessel retention and ex-vessel fuel coolant interaction for AP1000, ERI/NRC 03-202, Revision 3 (2004)

    Google Scholar 

  22. Franz, B., Dhir, V.K.: Experimental investigation of natural convection in spherical segments of volumetrically heated pools. In: ASME Proc. 1992 Nat. Heat Transfer Conf., HTD, August 9-12, vol. 192, pp. 69–76 (1992)

    Google Scholar 

  23. Gitihnji, P.M., Soberski, R.H.: Some effect of the orientation of the heating surface in nucleate boiling. Trans. Am. Soc. Mech. Engrs., Series C, J. Heat Transfer 85(4), 379 (1963)

    Google Scholar 

  24. Globe, S., Dropkin, D.: Natural convection heat transfer in liquids confined by two horizontal plates and heated from below. J. Heat Transfer ASME 81(1), 24–28 (1959)

    Google Scholar 

  25. Guo, Z., El Genk, M.S.: An experimental study of saturated pool boiling from downward facing and inclined surfaces. Int. J. Heat Mass Transfer 35(9), 2109–2117 (1992)

    Article  Google Scholar 

  26. Halle, M., Kymäläinen, O., Tuomisto, H.: Experimental COPO II data on natural convection in homogeneous and stratified pools. In: Proc. NURETH 9, San Francisco, California, October 3-8 (1999)

    Google Scholar 

  27. Henry, R.E., Fauske, H.K.: External cooling of a reactor vessel under severe accident conditions. Nucl. Eng. Design 139, 31–41 (1993)

    Article  Google Scholar 

  28. Henry, R.E., Burelbach, J.P., Hammerslay, R.J., Henry, C.E.: Cooling of core debris within the reactor vessel lower head. Nucl. Technol. 101, 385–399 (March 1993)

    Google Scholar 

  29. Herbst, O., Klemm, L.: Tests to prove the functioning of the external cooling concept of the SWR 1000. FANP /TGT1/03/en27, Erlangen (2003)

    Google Scholar 

  30. Incopera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn. John Wiley & Sons, New York (2002)

    Google Scholar 

  31. Jacob, M.: Heat Transfer. John Wiley & Sons, New York (1949)

    Google Scholar 

  32. Jahn, M., Reineke, H.H.: Free convection heat transfer with internal heat sources, calculation and measurements. In: Proceedings of 5th International Heat Transfer Conference, Paper NC2, vol. 8, pp. 74–78 (September 1974)

    Google Scholar 

  33. Jaluria, Y.: Natural Convection Heat and Mass Transfer. Pergamon Press, Oxford (1983)

    Google Scholar 

  34. Jeffreys, H.: The stability of a layer of fluid heated below. Phil. Mag. 2, 833–844 (1926a)

    Google Scholar 

  35. Jeffreys, H.: Some cases of instability in fluid motion. Proc. R. Soc. London Ser. A 118, 195–208 (1926b)

    Google Scholar 

  36. Jeong, Y.H., Baek, W.-P., Chang, S.H.: CHF Experiments of the reactor vessel wall using 2-D slide test section. In: NURETH-10 International Topical Meeting on Nuclear Reactor Thermal Hydraulics N°10, Seoul, COREE, REPUBLIQUE DE (10/2003), vol. 152(2), pp. 162–169 (2005)

    Google Scholar 

  37. Jergel, M., Stevenson, R.: Critical heat transfer to liquid Helium in open pools and narrow channels. Int. J. Heat Mass Transfer 12, 2099–2107 (1971)

    Article  Google Scholar 

  38. Jones, C.A., Moore, D.R., Weiss, N.O.: Axis-symmetric convection in a cylinder. J. Fluid Mech. 73, 353–388 (1976)

    Article  MATH  Google Scholar 

  39. Kolev, N.I.: Sicherheitsbericht des geplanten WWER-640 (W-407) Auswertung: System für Erhaltung der Schmelze im RDB, Schmelzfänger, KWU NA-M/93/016, Project GUS-Kooperation (1993)

    Google Scholar 

  40. Kolev, N.I.: External Cooling of VVER 640 Reactor Vessel under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E029, 18.04, Project WWER-640. Revision KWU NA-M/95/E029r (1995a)

    Google Scholar 

  41. Kolev, N.I.: External Cooling of EPR 1500 Reactor Vessel Under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E030, 20.04, Project R&D (1995b)

    Google Scholar 

  42. Kolev, N.I.: External Cooling of KKI 1 Reactor Vessel Under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E051, 26.07, Project R&D (1995c)

    Google Scholar 

  43. Kolev, N.I.: External cooling of PWR reactor vessel during severe accident. Kerntechnik 61(2-3), 67–76 (1995a); Abbreviated form in Proceedings of ICONE-4, The Fourth International Conference on Nuclear Engineering, New Orleans, USA, March 8-12 (1996)

    Google Scholar 

  44. Kolev, N.I.: SWR 1000 Severe accident control through in-vessel melt retention by external RPV cooling. SNP NDS2/00/E2515, Project SWR1000, Erlangen (July 29, 2000)

    Google Scholar 

  45. Kolev, N.I.: SWR 1000 Severe accident control through in-vessel melt retention by external RPV cooling. In: 9th International Conference on Nuclear Engineering, Nice, France, (April 2-12, 2001)

    Google Scholar 

  46. Kolev, N.I.: External cooling – the SWR 1000 severe accident manage-ment strategy. In: Proceedings of ICONE-12 2004, Arlington VA, USA, June 13-17 (2004); April 25–29, 2004, Paper ICONE12-49055, Presented first as SWR 1000 In-Vessel Melt Retention, STUK Meeting hold at 13.8.2003 in Helsinki, Finland; (November 17-18, 2005) European BWR Forum, 1st Seminar on SWR1000 Design Features, Framatome ANP, Offenbach, Germany; (May 10-11, 2006) European BWR Forum, 2nd Seminar on SWR1000 Design Features, Oskarshamn, Sweden (2004)

    Google Scholar 

  47. Kolev, N.I.: Multiphase Flow Dynamics, vol 2 Thermal and mechanical interactions, 2nd ed. with 81 Figures, 3rd ed., (March 10, 2007) Springer, Berlin, New York, Tokyo, ISBN 3-540-22107-7 (2002, 2004, 2007), http://www.springeronline.com/east/3-540-22107-7

  48. Kulaki, F.A., Emara, A.A.: High Rayleigh Number Convection in Enclosed Fluid Layers with Internal Heat Sources. U.S. Nuclear Regulatory Commission Report NUREG-75/065 (1975)

    Google Scholar 

  49. Kymäläinen, O., et al.: Critical heat flux on thick walls of large natural circulation loops. In: ANS Proceedings National Heat Transfer Conference, ANS HTC, San Diego, CA, vol. 6, pp. 44–50 (1992)

    Google Scholar 

  50. Kymäläinen, O., Hongisto, O., Pessa, E.: COPO experiments on heat transfer from a volumetrically heated pool, DLV1-G380-0377, Imatran Voima Oy Process Laboratory (April 1993)

    Google Scholar 

  51. Kymäläinen, O., Tuomisto, H., Hongisto, O., Theofanous, T.G.: Heat flux distribution from a volumetrically heated pool with high Rayleigh number. In: Proc. of NURETH 6, Grenoble, France, October 5-8, pp. 48–53 (1993)

    Google Scholar 

  52. Liu, Y.C., Donald, S.D., Cheung, F.B.: Boiling-induced flow and heat transfer in a hemispherical channel with tube intrusion. In: Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, Mexico, August 15-17 (1999)

    Google Scholar 

  53. Rayleigh, L.: On convective currents in a horizontal layer of fluids when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)

    Google Scholar 

  54. Lyon, D.N.: Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between lambda-point and critical temperature. Int. Adv. Cryog. Eng. 11, 371–379 (1965)

    Google Scholar 

  55. Mayinger, F., Jahn, M., Reineke, H.H., Steinbrenner, U.: Examination of thermo-hydraulic processes and heat transfer in core melt, BMFT R8 48/1. Institut für Verfahrenstechnik der TU Hanover (1976)

    Google Scholar 

  56. Nishikawa, K., et al.: Effect of surface configuration on nucleate boiling heat transfer. Int. J. Heat Mass Transfer 27(9), 1559–1571 (1984)

    Article  Google Scholar 

  57. O’Brien, J.E., Hawkes, G.L.: Thermal analysis of a reactor lower head with core re-location and external boiling heat transfer. AIChE Symp. Ser., Heat Transfer-Minneapolis, MN, pp. 159–168 (1991)

    Google Scholar 

  58. Park, H., Dhir, V.K.: Effect of outside cooling on the thermal behavior of a pressurized water reactor vessel lower head. Nucl. Technol. 100, 331 (1992)

    Google Scholar 

  59. Pchelkin, I.M.: Convective and Radiation Heat Transfer, Moscow, Publ. Academy of Science USSR, pp. 56–64 (1960) (in Russian)

    Google Scholar 

  60. Rempe, J.L., et al.: Potential for AP600 in-vessel retention through ex-vessel flooding. Technical evolution report, INEEL/EXT-97-0077 (1997)

    Google Scholar 

  61. Rouge, S.: Large scale vessel coolability in natural convection at low pressure. In: NURETH 7 Conference, vol. 169, pp. 185–195. Saratoga Springs, USA (1997); see also in Rouge S SULTAN test facility for large scale vessel coolability in natural convection at low pressure. NED, vol. 169, pp 185–195 (1997)

    Google Scholar 

  62. Rouge, S., Dor, I., Geffraye, G.: Reactor vessel external cooling for corium retention: SULTAN Experimental program and modeling with CATHARE code. In: Proceedings of the Workshop on In-vessel Core Debris Retention and Coolability, Mu-nich, NEA/CSNI/R, vol. (98), pp. 351–363 (March 1998)

    Google Scholar 

  63. Schmidt, H., et al.: Tests to investigate the RPV exterior two-phase flow behavior in the event of core melt. In: 38th European Two-Phase Flow Group Meeting, Karlsruhe, May 29-31 (2000); Paper A6

    Google Scholar 

  64. Sonnenkalb, M.: Summary of previous German research activities and status of GRS program on in-vessel molten pool behavior and ex-vessel coolability, OECD/CSNI/NEA. In: Workshop on large molten pool heat transfer. Nuclear Research Centre Grenoble, France, March 9-11 (1994)

    Google Scholar 

  65. Steinberner, U., Reineke, H.H.: Turbulent buoyancy convection heat transfer with internal heat sources. In: Proceedings 6th International Heat Transfer Conference, Toronto, Canada, vol. NC-21, pp. 305–310 (1978)

    Google Scholar 

  66. Sulatski, A.A., Cherny, O.D., Efimov, V.K., Granovskii, V.S.: Boiling crisis at the outer surface of VVER vessel. In: Proceedings of the 11th International School-Seminar of Young Scientists and Specialists: The Physics of Heat Transfer in Boiling and Condensation, Moskow, Russia, May 21-24 (1997)

    Google Scholar 

  67. Sun, K.Y.: Modeling of heat transfer to nuclear steam supply system heat sink and application to severe accident sequences. Nucl. Technol. 6, 274–291 (1994)

    Google Scholar 

  68. Theofanous, T.G., Angelini, S.: Natural convection for in-vessel retention and prototypic Rayleigh numbers. Nuclear Engineering and Design 200(1-2), 1–9 (2000)

    Article  Google Scholar 

  69. Theofanous, T.G., Liu, C., Angelini, S., Kymäläinen, O., Tuomisto, H., Addition, S.: Experience from the first two integrated approaches to in-vessel retention through external cooling. In: OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer, March 9-11. Theofanous TG, Liu C, Angelini S, Kymäläinen O, Tuomisto H and Addition S, Nuclear Research Centre, France (1994a)

    Google Scholar 

  70. Theofanous, T.G., Syry, S., Salmassi, T., Kymäläinen, O., Tuomisto, H.: Critical heat flux through curved, downward facing, thick walls. In: OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer, March 9-11, Nuclear Research Center, France (1994b)

    Google Scholar 

  71. Theofanous, T.G., Liu, C., Additon, S., Angelini, S., Kymkäläinen, O., Salmassi, T.: In-vessel coolability and retention of a core melt, DOE/ID-10460. U.S. Department of Energy (November 1994c)

    Google Scholar 

  72. Theofanous, T.G., et al.: In vessel coolability and retention of core melt. DOE/ID-10460 vol. 1 (1996a)

    Google Scholar 

  73. Theofanous, T.G., et al.: The first results from the ACOPO experiment. In: Proceedings of the Topical Meeting On Probabilistic Safety Assessment (PSA 1996), Park Soty, Utah, (September 1996b)

    Google Scholar 

  74. Theofanous, T.G., et al.: The mechanism and prediction of the critical heat flux in inverted geometry. In: 3rd International Conference on Multiphase Flow, ICMF 1998, June 8-12, Lion, France (1998)

    Google Scholar 

  75. Turland, B.D., Dobson, G.P., Allen, E.J.: Models for melt-vessel interac-tions. AEA Technol. 4544(1) (November 1999)

    Google Scholar 

  76. VDI-Wärmeatlas, Berechnungsblätter für den Wärmeübergang, Sechste Auflage, VDI Verlag, Düsseldorf (1991)

    Google Scholar 

  77. Vishnev, I.P.: Vlijanie orientatsii poverhnost nagreva v gravitationnom pole na krisis puzyrkovogo kipenija zhydkosti. Inzhenerno-Fizicheskij Zhurnal 24(1), 59–66 (1973) (in Russian)

    Google Scholar 

  78. Vishnev, I.P., et al.: Study of heat transfer of boiling of helium on surfaces with various orientations. Heat Transfer-Sov. Res. 8(4), 104–108 (1976)

    Google Scholar 

  79. Wang, C.H., Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J. Heat Transfer 115, 659–669 (1993)

    Article  Google Scholar 

  80. Wörner, W.: Direkte Simulation turbulenter Rayleigh-Benard-Konvektion in flüssigem Natrium, KfK 5228, Kernforschungszentrum Karlsruhe (November 1994)

    Google Scholar 

  81. Yang, J., Cheung, F.B., Rempe, J.L., Suh, K.Y., Kim, S.B.: Critical heat flux for down-ward-facing boiling on a coated hemispherical vessel surrounded by an insulation structure. Nucl. Eng. Technol. 38(2) (2006); Special Issue on ICAPP 2005

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). External cooling of reactor vessels during severe accident. In: Multiphase Flow Dynamics 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20601-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20601-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20600-9

  • Online ISBN: 978-3-642-20601-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics