Skip to main content

Entanglement and Experimental Tests of Quantum Mechanics

  • Chapter
  • First Online:
  • 132k Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Equations (7.3)–(7.6) display two possible features appearing in the description of bipartite systems: in the first two equations, each subsystem possesses its own quantum state \({\varphi }_{p}\), which constitutes a complete description of the physical state of the subsystem (a familiar situation from classical physics). This feature of separability does not hold for the last two equations. Schrödinger was the first to emphasize the non-classical features of “entangled” states and coined this term in [76].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Intensive use has been made of [78], [79].

  2. 2.

    The present argument is the spin version of the EPR original one. The adaptation is due to David Bohm [80].

  3. 3.

    The Bell inequality described here is taken from [82].

  4. 4.

    The two loopholes have not been closed yet in a single experiment.

  5. 5.

    This type of entanglement constitutes the basis for understanding the emergence of classical macrosystems from the quantum substrate (Sect. 14.2 † ).

References

  1. B.C. Olschak: Buthan. Land of Hidden Treasures. Photography by U. and A. Gansser (Stein & Day, New York 1971).

    Google Scholar 

  2. M. Planck: Verh. Deutsch. Phys. Ges. 2, 207, 237 (1900).

    Google Scholar 

  3. A. Einstein: Ann. der Phys. 17, 132 (1905).

    Google Scholar 

  4. A.H. Compton: Phys. Rev. 21, 483 (1923).

    Google Scholar 

  5. C.L. Davisson and L.H. Germer: Nature 119, 528 (1927); G.P. Thomson: Proc. Roy. Soc. A 117, 600 (1928).

    Google Scholar 

  6. H. Geiger and E. Mardsen: Proc. Roy. Soc. A 82, 495 (1909); E. Rutherford: Phil. Mag. 21, 669 (1911).

    Google Scholar 

  7. J. Balmer: Verh. Naturf. Ges. Basel 7, 548, 750 (1885); Ann. der Phys. und Chem. 25, 80 (1885).

    Google Scholar 

  8. N. Bohr: Phil. Mag. 25, 10 (1913); 26, 1 (1913); Nature 92, 231 (1913).

    Google Scholar 

  9. W. Heisenberg: Zeitschr. Phys. 33, 879 (1925).

    Google Scholar 

  10. M. Born, W. Heisenberg and P. Jordan: Zeitschr. Phys. 35, 557 (1926).

    Google Scholar 

  11. P.A.M. Dirac: Proc. Roy. Soc. A 109, 642 (1925).

    Google Scholar 

  12. E. Schrödinger: Ann. der Phys. 79, 361, 489 (1926); 80, 437 (1926); 81, 109 (1926).

    Google Scholar 

  13. D.F. Styer et al.: Am J. Phys. 70, 288 (2002).

    Google Scholar 

  14. J. Schwinger: Quantum Mechanics. Symbolism of Atomic Measurements, ed. by B.G Englert (Springer-Verlag, Berlin, Heidelberg, New York 2001) Chap. 1.

    Google Scholar 

  15. P.A.M. Dirac: The Principles of Quantum Mechanics (Oxford University Press, Amen House, London 1930).

    Google Scholar 

  16. A. Einstein, B. Podolsky and N. Rosen: Phys. Rev. 47, 777 (1935).

    Google Scholar 

  17. O. Stern and W. Gerlach: Zeitschr. Phys. 8, 110 (1921); 9, 349 (1922).

    Google Scholar 

  18. G. Kaiser: J. Math. Phys. 22, 705 (1981).

    Google Scholar 

  19. D.F. Styer: Am. J. Phys. 64, 31 (1996).

    Google Scholar 

  20. J. Roederer: Information and its Role in Nature (Springer-Verlag, Berlin, Heidelberg, New York 2005).

    Google Scholar 

  21. N. Bohr: The Philosophical Writings of Niels Bohr (Ox Bow Press, Woodbridge, Connecticut 1987).

    Google Scholar 

  22. N.D. Mermin: Am. J. Phys. 71, 23 (2003).

    Google Scholar 

  23. R.F. Feynman, R.B. Leighton and M. Sands: The Feynman Lectures on Physics. Quantum Mechanics [Addison-Wesley, Reading (Massachusetts), London, New York, Dallas, Atlanta, Barrington (Illinois) 1965] Chap. 5.

    Google Scholar 

  24. A. Zeilinger, R. Gähler, C.G. Shull, W. Treimer and W. Hampe: Rev. Mod. Phys. 60, 1067 (1988).

    Google Scholar 

  25. O. Nairz, M. Arndt and A. Zeilinger: Am. J. Phys. 71, 319 (2003).

    Google Scholar 

  26. W. Heisenberg: Zeitschr. Phys. 43, 172 (1927).

    Google Scholar 

  27. B. Cougnet, J. Roederer and P. Waloshek: Z. für Naturforschung A 7, 201 (1952).

    Google Scholar 

  28. W. Wootters and W. Zurek: Nature 299, 802 (1982); Phys. Today, 76 (Feb. 2009).

    Google Scholar 

  29. R.S. Mulliken: Nature 114, 350 (1924).

    Google Scholar 

  30. E.T. Jaynes and F.W. Cummings: Proc. I.E.E.E. 51, 81 (1963).

    Google Scholar 

  31. M. Born: Zeitschr. Phys. 37, 863 (1926); 38, 499 (1926).

    Google Scholar 

  32. L. de Broglie: C. R. Acad. Sci. Paris 177, 507, 548 (1923).

    Google Scholar 

  33. G. Binning and H. Rohrer: Rev. Mod. Phys. 71, S324 (1999) and references contained therein.

    Google Scholar 

  34. F. Bloch: Zeitschr. Phys. 52, 555 (1928).

    Google Scholar 

  35. G.E. Uhlenbeck and S.A. Goudsmit: Nature 113, 953 (1925); 117, 264 (1926).

    Google Scholar 

  36. W. Pauli: Zeitschr. Phys. 43, 601 (1927).

    Google Scholar 

  37. S. Haroche and J.M. Raimond: Exploring the Quantum. Atoms, Cavities and Photons (Oxford University Press, Oxford (2010).

    Google Scholar 

  38. Å. Bohr and B. Mottelson: Nuclear Structure (W.A. Benjamin, New York, Amsterdam 1969)

    Google Scholar 

  39. R.P. Martinez–y–Romero, H.N. Nuñez–Yepez and A.L. Salas–Brito: Am. J. Phys. 75, 629 (2007).

    Google Scholar 

  40. A.K. Grant and J.L. Rosner: Am. J. Phys. 62, 310 (1994).

    Google Scholar 

  41. D.A. McQuarrie: Quantum Chemistry (University Science Books, Herndon, Virginia 1983) Fig. 6-12.

    Google Scholar 

  42. W. Pauli: Zeitschr. Phys. 31, 625 (1925).

    Google Scholar 

  43. K.L. Jones et al.: Nature 465, 454 (2010).

    Google Scholar 

  44. M. Kastner: Physics Today 46, 24 (1993).

    Google Scholar 

  45. R. Fitzgerald: Physics Today 57, 22 (2004) and references contained therein.

    Google Scholar 

  46. A. Einstein: Sitz. Ber. Preuss. Ak. Wiss. 2, 261 (1924); 3 (1925).

    Google Scholar 

  47. D. Kleppner: Physics Today 49, 11 (1996); F. Dalfovo, S. Giorgini, L.P. Pitaevckii and S. Stringari: Rev. Mod. Phys. 71, 463 (1999).

    Google Scholar 

  48. M.H. Anderson, J.R. Enscher, M.R. Matthews, C.E. Wieman and E.A. Cornell: Science 269, 198 (1995); J.R. Enscher, D.S. Jin, M.R. Matthews, C.E. Wieman and E.A. Cornell: Phys. Rev. Lett. 77, 4984 (1996).

    Google Scholar 

  49. K. von Klitzing, G. Dorda and M. Pepper: Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  50. D.C. Tsui, H.L. Störmer and A.C. Gossard: Phys. Rev. Lett. 48, 1559 (1982); Phys. Rev. B 25, 1405 (1982).

    Google Scholar 

  51. R.E. Prange: Introduction to The Quantum Hall Effect, ed. by R.E. Prange and S.M. Girvin (Springer-Verlag, New York, Berlin, Heidelberg 1987) Fig. 1.2.

    Google Scholar 

  52. B.L. Halperin: Scientific American 254, Vol. 4, 52 (1986).

    Google Scholar 

  53. J.D. Jackson: Classical Electrodynamics (John Wiley & Sons, New York, Chichester, Brisbane, Toronto 1975) p. 574.

    Google Scholar 

  54. R.B. Laughlin: Phys. Rev. Lett. 50, 1395 (1983).

    Google Scholar 

  55. S.N. Bose: Zeitschr. Phys. 26, 178 (1924).

    Google Scholar 

  56. P.A.M. Dirac: Proc. Roy. Soc. A 112, 661 (1926).

    Google Scholar 

  57. E. Fermi: Zeitschr. Phys. 36, 902 (1926).

    Google Scholar 

  58. R. Eisberg and R. Resnick: Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (John Wiley & Sons, New York (1975).

    Google Scholar 

  59. R.P. Feynman: Phys. Rev. 76, 769 (1949).

    Google Scholar 

  60. C. Itzykson and J.B. Zuber: Quantum Field Theory (McGraw-Hill, New York, St. Louis, San Francisco, London 1980).

    Google Scholar 

  61. B.H. Brandow: Rev. Mod. Phys. 39, 771 (1967); E.M. Krenciglowa and T.T.S. Kuo: Nucl. Phys. A 240, 195 (1975).

    Google Scholar 

  62. C. Bloch and J. Horowitz: Nucl. Phys. 8, 91 (1958).

    Google Scholar 

  63. J.J. Sakurai: Modern Quantum Mechanics. Addison–Wesley Pub. Co., Reading, Massachusetts (1994).

    Google Scholar 

  64. A. Einstein: Verh. Deutsch. Phys. Ges. 18, 318 (1916); Mitt. Phys. Ges. Zürich 16, 47 (1916); Phys. Zeitschr. 18, 121 (1917).

    Google Scholar 

  65. T.H. Maiman: Nature 187, 493 (1960).

    Google Scholar 

  66. J. Bardeen, L.N. Cooper and J.R. Schrieffer: Phys. Rev. 106, 162 (1957).

    Google Scholar 

  67. C. Becchi, A. Rouet and R. Stora: Phys. Lett. B 52, 344 (1974).

    Google Scholar 

  68. M. Henneaux and C. Teitelboim: Quantization of Gauge Systems (Princeton University Press, Princeton, New Jersey 1992).

    Google Scholar 

  69. D.R. Bes and J. Kurchan: The Treatment of Collective Coordinates in Many-Body Systems. An Application of the BRST Invariance (World Scientific Lecture Notes in Physics, Vol. 34, Singapore, New Jersey, London, Hong Kong 1990); D.R. Bes and O. Civitarese: Am. J. Phys. 70, 548 (2002).

    Google Scholar 

  70. H. Kammerlingh Onnes, Comm. Phys. Lab. Univ. Leiden, Nos. 122 and 124 (1911).

    Google Scholar 

  71. B.D. Josephson, Phys. Lett. 1, 251 (1962).

    Google Scholar 

  72. R. Feynman and A. Hibbs: Quantum Mechanics and Path Integrals (Mc Graw–Hill Book Co., New York 1965).

    Google Scholar 

  73. P. Cartier and C. DeWitt–Morette: Functional Integration (Cambridge U. Press, New York 2007).

    Google Scholar 

  74. S. Carlip: Phys. Today 61, 61 (2008).

    Google Scholar 

  75. L.S. Schulman: Techniques and Applications of Path Integrals (John Wiley & Sons, New York 1981).

    Google Scholar 

  76. E. Schrödinger: Naturwissenschaften 23, 807, 823, 845 (1935)

    Google Scholar 

  77. A. Aspect: Introduction: John Bell and the Second Quantum Revolution, in J.S. Bell, “Speakable and Unspeakable in Quantum Mechanics”, Cambridge University Press (2008).

    Google Scholar 

  78. A. Zeilinger: Rev. Mod. Phys. 71, S288 (1999) and references contained therein

    Google Scholar 

  79. A. Zeilinger, G. Weihs, T. Jennewein and M. Aspelmeyer: Nature 433, 230 (2005).

    Google Scholar 

  80. D. Bohm: Quantum Theory. Prentice Hall, New Jersey (1951); Phys. Rev. 85, 166, 180 (1952).

    Google Scholar 

  81. J.S. Bell: Physics 1, 195 (1964).

    Google Scholar 

  82. N.D. Mermin: Physics Today, 38 (1985).

    Google Scholar 

  83. A. Aspect, P. Grangier and G. Roger: Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982).

    Google Scholar 

  84. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter and A. Zeilinger: Phys. Rev. Lett. 81, 5039 (1998).

    Google Scholar 

  85. W. Nagourney, J. Sandberg and H. Dehmet, Phys. Rev. Lett. 56, 2797 (1986).

    Google Scholar 

  86. M. Brune et al.: Phys. Rev. Lett. 76, 1800 (1996).

    Google Scholar 

  87. M.A. Rowe et al.: Nature 409, 791 (2001).

    Google Scholar 

  88. A.D. O’Connell et al.: Nature 464, 697 (2010).

    Google Scholar 

  89. C.H. Bennet and G. Brassard: Proc. I.E.E.E. Int. Conf. on Computers, Systems and Signal Processing (IEEE Press, Los Alamos, California 1984) p. 175.

    Google Scholar 

  90. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. Wooters: Phys. Rev. Lett. 70, 1895 (1993).

    Google Scholar 

  91. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger: Nature 390, 575 (1997).

    Google Scholar 

  92. E. Gerjuoy: Am. J. Phys. 73, 521 (2005).

    Google Scholar 

  93. P.W. Schor: Proc. 34th Annual Symp. Found. Comp. Scien. (FOCS), ed. by S. Goldwasser (IEEE Press, Los Alamitos, California 1994) p. 124.

    Google Scholar 

  94. I.L. Chuang, L.M.K. Vandersypen, X.L. Zhou, D.W. Leung and S. Lloyd: Nature 393, 143 (1998).

    Google Scholar 

  95. P.A.M. Dirac: Hungarian Ac. of Sc. Rep. KFK-62 (1977).

    Google Scholar 

  96. E. Schrödinger: Naturwissenschaftern. 23, 807, 823, 844 (1935).

    Google Scholar 

  97. R. Penrose: The Road to Reality (Alfred A. Knopf, New York, 2005, Chapter 29).

    Google Scholar 

  98. M. Schlosshauer: Decoherence and the Quantum–to–Classical Transition (Springer–Verlag, Berlin, Heidelberg 2007).

    Google Scholar 

  99. W.H. Zurek: Revs. Mod. Phys. 75, 715 (2003) and references contained therein; Phys. Today 49, 36 (1991).

    Google Scholar 

  100. J.P. Paz and W.H. Zurek: Environment-Induced Decoherence and the Transition from Classical to Quantum. In: Coherent Atomic Matter Waves, Les Houches Session LXXXII, ed. by R. Kaiser, C. Westbrook and F. Davids (Springer-Verlag, Berlin, Heidelberg, New York 2001) p. 533.

    Google Scholar 

  101. J. von Neumann: Matematische Grundlagen der Quantenmechanik (Springer, Berlin 1932).

    Google Scholar 

  102. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt: Appl. Phys. B 77, 781 (2003)

    Google Scholar 

  103. E. Hobsbawn: The Age of Extremes. A History of the World, 1914–1991 (Vintage Books, New York 1996) p. 7.

    Google Scholar 

  104. O. Spengler: Der Untergang des Abendlandes. Umrisse einer Morphologie der Weltgeschichte, Vol. 1: Gestalt und Wirklichkeit (Munich, 1918). First English translation: The Decline of the West, Vol. 1: Form and Actuality (Knof, New York 1926).

    Google Scholar 

  105. H. Kragh: Quantum Generations. A History of Physics in the Twentieth Century (Princeton University Press, Princeton, New Jersey 1999).

    Google Scholar 

  106. A. Pais: ‘Subtle is the Lord...’ The Science and the Life of Albert Einstein (Oxford University Press, Oxford, New York, Toronto 1982). Inward Bound (Oxford University Press, Oxford, New York, Toronto 1986); Niels Bohr’s Times. In Physics, Philosophy and Politics (Clarendon Press, Oxford 1991).

    Google Scholar 

  107. P. Robertson: The Early Years. The Niels Bohr Institute 1921–1930 (Akademisk Forlag. Universitetsforlaget i København, Denmark 1979).

    Google Scholar 

  108. G. Kirchhoff: Ann. Phys. Chem. 109, 275 (1860).

    Google Scholar 

  109. W. Wien: Sitz. Ber. Preuss. Ak. Wiss. 55 (1893); Ann. Physik 58, 662 (1896).

    Google Scholar 

  110. G. Kirchhoff and R. Bunsen: Ann. Phys. Chem. 110, 160 (1860).

    Google Scholar 

  111. R. Millikan: Phys. Rev. 4, 73 (1914); 6, 55 (1915).

    Google Scholar 

  112. E. Lawrence and J. Beams: Phys. Rev. 32, 478 (1928); A. Forrester, R. Gudmundsen and P. Johnson: Phys. Rev. 90, 1691 (1955).

    Google Scholar 

  113. J. Clauser: Phys. Rev. D 9, 853 (1974).

    Google Scholar 

  114. H.G.J. Moseley: Nature 92, 554 (1913); Phil. Mag. 26, 1024 (1913); 27, 703 (1914).

    Google Scholar 

  115. J. Frank and H. Hertz: Verh. Deutsch. Phys. Ges. 16, 457 (1914).

    Google Scholar 

  116. A. Sommerfeld: Sitz. Ber. Bayer. Akad. Wiss. 459 (1915).

    Google Scholar 

  117. L.H. Thomas: Nature 117, 514 (1926); Phil. Mag. 3, 1 (1927).

    Google Scholar 

  118. M. Born and P. Jordan: Zeitschr. Phys. 34, 858 (1925).

    Google Scholar 

  119. W. Heisenberg: Zeitschr. Phys. 38, 499 (1926).

    Google Scholar 

  120. P.A.M. Dirac: Proc. Roy. Soc. A 117, 610 (1928); A 118, 351 (1928).

    Google Scholar 

  121. N. Bohr, H.A. Kramers and J.C. Slater: Phil. Mag. [6] 47, 785 (1924); Zeitschr. Phys. 24, 69 (1924).

    Google Scholar 

  122. N. Bohr: Nature 136, 65 (1935); Phys. Rev. 48, 696 (1935).

    Google Scholar 

  123. A. Einstein: Reply to Criticisms. In: Albert Einstein. Philosopher-Scientist, ed. by P.A Schilpp (Open Court Publishing, Peru, Illinois 2000) p. 663.

    Google Scholar 

  124. N. Bohr: Discussions with Einstein on Epistemological Problems in Atomic Physics. In Albert Einstein. Philosopher-Scientist, ed. by P.A Schilpp (Open Court Publishing, Peru, Illinois 2000) p. 199.

    Google Scholar 

  125. M. Tegmark and J.A. Wheeler: Scientific American 284, Vol. 2, 54 (2001).

    Google Scholar 

  126. J. Bell, Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  127. H.D. Zeh: Found. Phys. 1, 69 (1970).

    Google Scholar 

  128. W.H. Zurek: Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982).

    Google Scholar 

  129. W.H. Zurek: Reduction of the Wavepacket: How Long does it take?. In: Frontiers in Nonequilibrium Statistical Mechanics, G.T. Moore and M.O. Scully, eds. (Plenum Press, New York, 1986) p.145

    Google Scholar 

  130. E. Joos and H.D. Zeh: Z. Phys. B: Condens. Matter 59, 223 (1985).

    Google Scholar 

  131. The NIST Reference on Constants, Units, and Uncertainty: Appendix 3. http:/physics.nist.gov/cuu/Units/units.html.

  132. R.W. Richardson: Phys. Lett. 3, 277 (1963); J. Dukelsky, H.S. Lerma, L. Robledo, R. Rodriguez-Guzman and S.M. Rombouts: Phys. Rev. C 84, 061301 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bes, D.R. (2012). Entanglement and Experimental Tests of Quantum Mechanics. In: Quantum Mechanics. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20556-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20556-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20555-2

  • Online ISBN: 978-3-642-20556-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics