Skip to main content

Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems for Security Applications

  • Chapter
Book cover Chaos-Based Cryptography

Part of the book series: Studies in Computational Intelligence ((SCI,volume 354))

Abstract

In the information and communication security fields, system designers are faced with many challenges in both the trade-off cost/performance/power and architecture design. This is especially true for embedded system designs, often operating in nonsecure environments, while at the same time being constrained by such factor as computational capacity, memory size, and in particular power consumption. One challenge is the design of hardware architecture in order to obtain the appropriate security and the best tradeoff between hardware resources and the best throughputs rate for embedded applications. This chapter broadly outlines a disciplined approach to design and implementation 3D chaotic systems as Lorenz, Lü, Colpitts, Chen systems and so in embedded applications. The approach combines the numerical resolution method paradigm of 3D differential equations characterizing some chaotic systems with the design hardware architecture paradigm. The model of Runge-Kutta’s numerical method to resolve 3D chaotic system requirements used as key generator for data encryption applications is detailed. This chapter describes this approach and presents a case study where the Lorenz’s chaotic system is implemented on a FPGA Chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Physical Review Letters 64(8), 821–824 (1990), doi:10.1103/PhysRevLett.64.821

    Google Scholar 

  2. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with application to communications. Physical Review Letters 71(1), 65–68 (1993)

    Article  Google Scholar 

  3. Zhang, Y., Tao, C., Du, G., Jiang, J.J.: Physical Review Letters E 71, 016217 (2005)

    Google Scholar 

  4. Lorenz, T.E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  5. Yang, T.: A survey of chaotic secure communication systems. International Journal of Computational Cognition 2(2), 81–130 (2004)

    Google Scholar 

  6. Abel, A., Schwartz, W.: Chaos Communications- Principles, Schemes and Systems analysis. In: Proc. of the IEEE Inst. for Fundamentals of Electr. Eng. & Electron., Dresden Univ. of Technol, vol. 90, pp. 691–710 (2002)

    Google Scholar 

  7. Kvarda, P.: Investigating the Rössler attractor using Lorenz plot and Lyapunov exponents. Radioengineering 11(3), 22–23 (2002)

    Google Scholar 

  8. Indrusiak, L.S., Dutra e Silva Jr., E.C., Glesner, M.: Advantages of the Linz-Sprott weak nonlinearity on the FPGA implementation of chaotic systems: a comparative analysis. In: Proc. Int. Symp. Signals, Circuits and Sys., vol. 2, pp. 753–756 (2005)

    Google Scholar 

  9. Chua, L.0.: Chua’s circuit: Ten years later. IEICE Trans. Fundamentals E77-A, 1811–1822 (1994)

    Google Scholar 

  10. Kocarev, L., Halle, K., Eckert, K., Chua, L.: Experimental demonstration of secure communication via chaotic synchronization. Int. J. Bifur. Chaos 2, 709–713 (1992)

    Article  MATH  Google Scholar 

  11. Tao, Y.: Chaotic secure communication systems history and new results. Telecom. Rev. 9, 597 (1999)

    Google Scholar 

  12. Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-Based Chaotic Circuits with Applications to Communications. IEEE Transactions on Circuits and Systems-11: Analog and Digital Signal Processing 40(10), 626–633 (1993)

    Article  Google Scholar 

  13. Parlitz, U., Chua, L.O., Kocarev, L., et al.: Transmission of digital signals by chaotic synchronization. Int. J. Bifurcations Chaos 2, 973–977 (1992)

    Article  MATH  Google Scholar 

  14. Matsumoto, T.: Chaos in electronic circuits. IEEE Inst. of Elec. and Elecs Eng. 75(8), 1033–1046 (1987)

    Google Scholar 

  15. Giannakopoulos, K., Souliotis, G., Fragoulis, N.: An integratable chaotic oscillator with Current Amplifiers. In: IEEE Int Symp. on Signals, Circuits and Systems, July 13-14, vol. 1, pp. 1–4 (2007)

    Google Scholar 

  16. Ozoguz, S., Ates, O., Elwakil, A.S.: An integrated circuit chaotic oscillator and its application for high speed random bit generation. In: ISCAS 2005, vol. 5, pp. 4345–4348 (2005)

    Google Scholar 

  17. Cha, C.Y., Lee, S.G.: Complementary Colpitts Oscillator in CMOS Technology. IEEE Transaction on Microwave Theory and Techniques 53(3) (March 2005)

    Google Scholar 

  18. Tanougast, C., Weber, S., Millerioux, G., Bouridane, A., Daafouz, J.: VLSI architecture and FPGA implementation of a hybrid message embedded self-synchronizing stream cipher. In: 4th IEEE Int. Symp. on Elec. Design, Test and Applications, pp. 386–389 (2008)

    Google Scholar 

  19. Sadoudi, S., Tanougast, C., Azzaz, M.S., Dandache, A., Bouridane, A.: Real-time FPGA Implementation of ’s Chaotic Generator for Cipher Embedded System. In: ISSCS 2009, Iasi, Romania, July 9-10 (2009)

    Google Scholar 

  20. Azzaz, M., Tanougast, C., Sadoudi, S., Dandache, A., Monteiro, F.: Real Time Image Encryption Based Chaotic Synchronized Embedded Cryptosystems. In: 8th IEEE International NEWCAS Conference, IEEE Circuits and Systems Society, Montréal, Canada, June 20-23 (2010)

    Google Scholar 

  21. Linz, S.J., Sprott, J.C.: Elementary chaotic flow. Phys. Lett. A 259, 240 (1999)

    MathSciNet  Google Scholar 

  22. Sprott, J.C., Linz, S.J.: Algebraically simple chaotic flows. Int. J. of Chaos Theory and Applications 5.3 (2000)

    Google Scholar 

  23. Mathworks, Matlab Software, Version 7.3, Mathworks (2006)

    Google Scholar 

  24. Chen, H.H., Chiang, J.S., Lin, Y.L., Lee, C.I.: Chaos synchronization of general Lorenz, Lü, and Chen systems. Hsiuping Journal 15, 159–166 (2007)

    Google Scholar 

  25. Lü, J., Chen, G.: A new chaotic attractor coined. Int. Journal of Bifurcation and Choas 12(3), 659–661 (2002)

    Article  MATH  Google Scholar 

  26. Giannakopoulos, K., Souliotis, G., Fragoulis, N.: An integratable chaotic oscillator with Current Amplifiers. In: IEEE Int Symp. on Signals, Circuits and Systems, July 13-14, vol. 1, pp. 1–4 (2007)

    Google Scholar 

  27. Lindsay, P.S.: Period doubling and chaotic behavior in a driven anharmonic oscillator. Phys. Rev. Lett. 47(19), 1349–1352 (1981)

    Article  Google Scholar 

  28. Piper, J.R., Sprott, J.C.: Simple autonomous chaotic circuits. IEEE Trans. on Circuits and Systems-II 57(9) (2010)

    Google Scholar 

  29. Maggio, G.M., De Feo, O., Kennedy, M.P.: Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications 46, 1118–1130 (1999)

    Article  MATH  Google Scholar 

  30. Wegener, C., Maggio, G.M., Kennedy, M.P.: An approximate one-dimensional model for the chaotic Colpitts oscillator. In: Proc. Nonlinear Dynamics of Electronic Systems, pp. 441–446 (1996)

    Google Scholar 

  31. Kennedy, M.P.: Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41, 771–774 (1994)

    Article  Google Scholar 

  32. Chen, H.H., Chiang, J.S., Lin, Y.L., Lee, C.I.: Chaos synchronization of general Lorenz, Lü, and Chen systems. Hsiuping Journal 15, 159–166 (2007)

    Google Scholar 

  33. Azzaz, M.S., Tanougast, C., Sadoudi, S., Bouridane, A., Dandache, A.: An FPGA implementation of a Feed-Back Chaotic Synchronization for secure communications. In: 7th International Symposium on Communication Systems Networks and Digital Signal Processing, pp. 239–243 (2010)

    Google Scholar 

  34. William Press, H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  35. Cartwright, J.H.E., Piro, O.: The Dynamics of Runge-Kutta Methods. Int. J. Bifurcation and Chaos 2, 427–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sobhy, M.I., Aseeri, M.A., Shehata, A.E.R.: Real Time Implementation of Continuous (Chua And Lorenz) Chaotic Generator Models Using Digital Hardware. In: Proc. of the Third International Symposium on Communication Systems Networks and Digital Processing, pp. 38–41 (1999)

    Google Scholar 

  37. Aseeri, M.A., Sobhy, M.I., Lee, P.: Lorenz Chaotic Model Using Field Programmable Gate Array (FPGA). In: Midwest Symposium on Circuit and Systems, pp. 686–699 (2002)

    Google Scholar 

  38. Xilinx, VirtexII-pro complete Datasheet, Xilinx (2007)

    Google Scholar 

  39. Xilinx, Integrated Software Environment (ISE), Version 10.1, Xilinx (2008)

    Google Scholar 

  40. Azzaz, M.S., Tanougast, C., Sadoudi, S., Dandache, A.: Real-time FPGA Implementation of the Lorenz Chaotic Generator for Ciphering Telecommunications. In: Joint IEEE International Circuits and Systems and TAISA Conférence (2009)

    Google Scholar 

  41. Mentor Graphics, Modelsim SE User’s Manuel, Sofware, Version 6. 4, Mentor Graphics (2008)

    Google Scholar 

  42. Xilinx, Xilinx University Program Virtex-II Pro Development System, Xilinx, UG069 (v1.1) (April 9, 2008)

    Google Scholar 

  43. Analog Devices, LC2MOS Complete, 8-Bit Analog I/0 Systems, AD7569/AD7669, Analog Devices (1996)

    Google Scholar 

  44. Tektronix, Digital Real-TimeTM Oscilloscopes TDS340A, TDS360 et TDS380, Tektronix (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanougast, C. (2011). Hardware Implementation of Chaos Based Cipher: Design of Embedded Systems for Security Applications. In: Kocarev, L., Lian, S. (eds) Chaos-Based Cryptography. Studies in Computational Intelligence, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20542-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20542-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20541-5

  • Online ISBN: 978-3-642-20542-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics