Skip to main content

Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography

  • Chapter
Book cover Chaos-Based Cryptography

Part of the book series: Studies in Computational Intelligence ((SCI,volume 354))

Abstract

Being a particular class of nonlinearity, chaos nowadays becomes one of the most well known and potentially useful dynamics. Although a chaotic system is only governed by some simple and low order deterministic rules, it possesses many distinct characteristics, such as deterministic but random-like complex temporal behavior, high sensitivity to initial conditions and system parameters, fractal structure, long-term unpredictability and so on. These properties have been widely explored for the last few decades and found to be useful for many engineering problems such as cryptographic designs, digital communications, network behaviour modeling, to name a few. The increasing interests in chaos-based applications have also ignited tremendous demand for new chaos generators with complicate dynamics but simple designs. In this chapter, two different approaches are described for the formation of high-dimensional chaotic maps and their dynamical characteristics are studied. As reflected by the statistical results, strong mixing nature is acquired and these high-dimensional chaotic maps are ready for various cryptographic usages. Firstly, it is used as a simple but effective post-processing function which outperforms other common post-processing functions. Based on such a chaos-based post-processing function, two types of pseudo random number generators (PRNGs) are described. The first one is a 32-bit PRNG providing a fast and effective solution for random number generation. The second one is an 8-bit PRNG system design, meeting the challenge of low bit-precision system environment. The framework can then be easily extended for some practical applications, such as for image encryption. Detailed analyses on these applications are carried out and the effectiveness of the high-dimensional chaotic map in cryptographic applications is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I., Aver, A.: Ergodic problems of classical mechanics. W. A. Benjamin, New York (1968)

    Google Scholar 

  2. Atay, F.M., Jost, J.: Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92(4), 144101 (2004)

    Article  Google Scholar 

  3. Billings, L., Bollt, E.M.: Probability density functions of some skew tent maps. Chaos, Solitons and Fractals 12, 365–376 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourke, P.: Recurrence Plots (1998), local.wasp.uwa.edu.au/pbourke/fractals/recurrence/

  5. Brookes, M.: Matrix Reference Manual (2005), www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

  6. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals 21, 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crypto++ Library, http://www.cryptopp.com

  8. Cruz, J.M., Chua, L.O.: An IC chip of Chua’s circuit. IEEE Trans.Circuits and Systems II: Analog and Digital Processing 40(10), 614–625 (1993)

    Google Scholar 

  9. Dai, S., Wu, Q., Pei, W., Yang, L., He, Z.: Lissajous chaotic map. In: Int. Conf. on Neural Networks and Signal Processing, vol. 1, pp. 772–775 (2003)

    Google Scholar 

  10. Donoghue, K.O., Kennedy, M.P., Forbes, P., Wu, M., Jones, S.: A fast and simple implementation of Chua’s oscillator with cubic-like nonlinearity. Int. J. Bifurcation and Chaos 15(9), 2959–2971 (2005)

    Article  MATH  Google Scholar 

  11. Falcioni, M., Palatella, L., Pigolotti, S., Vulpiani, A.: Properties making a chaotic system a good pseudo random number generator. Phys. Rev. E 72, 16220 (2005)

    Article  MathSciNet  Google Scholar 

  12. Grassi, G., Mascolo, S.: A systematic procedure for synchronizing hyperchaos via observer design. J. of Circuits, Systems and Computers 11(1), 1–16 (2002)

    Google Scholar 

  13. Hénon, M.: A two-dimensional mapping with a strange attractor. Communications Math. Phys. 50, 69–77 (1976)

    Article  MATH  Google Scholar 

  14. Holmgren, R.A.: A first course in discrete dynamical systems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  15. Jun, B., Kocher, P.: The Intel random number generator. Cryptography Research, White Paper Prepared for Intel Corporation (April 1999), http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf

  16. Kaneko, K.: Theory and applications of coupled map lattices. John Wiley & Sons, Chichester (1993)

    MATH  Google Scholar 

  17. Kohda, T., Tsuneda, A.: Statistics of chaotic binary sequences. IEEE Trans. Information Theory 43, 104–112 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kwok, H.S., Tang, K.S.: Chaotification of discrete-time systems using neurons. Int. J. of Bifurcation and Chaos 14(4), 1405–1411 (2004)

    Article  MATH  Google Scholar 

  19. Kwok, H.S., Tang, K.S.: Applications of high-dimensional cat map and its mixing nature. In: Int. Symp. Nonlinear Theory and its Applications, pp. 687–690 (2006)

    Google Scholar 

  20. Kwok, H.S., Tang, K.S.: A fast image encryption scheme based on high-dimensional chaotic map. Chaos, Solitons and Fractals 32(4), 1518–1529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, S., Li, Q., Li, W., Mou, X., Cai, Y.: Statistical properties of digital piecewise linear chaotic maps and their roles in cryptography and pseudo-random coding. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 205–221. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Li, S., Zheng, X.: Cryptanalysis of a Chaotic Image Encryption Method. In: IEEE Int. Symp. Circuits and Systems, vol. 2, pp. 708–711 (2002)

    Google Scholar 

  23. Lian, S., Mao, Y., Wang, Z.: 3D extensions of some 2D chaotic maps and their usage in data encryption. In: The Fourth Int. Conf. on Control and Automation, pp. 819–823 (2003)

    Google Scholar 

  24. Liu, Y., Sun, L., Zhu, Y., Beadle, P.: Novel method for measuring the complexity of schizophrenic EEG based on symbolic entropy analysis. IEEE-EMBS 1, 37–40 (2005)

    Google Scholar 

  25. Lorenz, E.N.: The essence of chaos. University of Washington Press, Seattle (1993)

    Book  MATH  Google Scholar 

  26. Lu, H., Wang, S., Wu, G.: Pseudo-random number generator based on coupled map lattices. Int. J. of Modern Phys. B 18(17-19), 2409–2414 (2004)

    Article  Google Scholar 

  27. Mao, Y.B., Chen, G., Lian, S.G.: A novel fast image encryption scheme based on the 3D chaotic baker map. Int. J. of Bifurcation and Chaos 14(10), 3613–3624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Misiurewicz, M.: Strange attractors for the Lozi-mappings, nonlinear dynamic. New York Acad. of Sciences 357, 348–358 (1980)

    Article  MathSciNet  Google Scholar 

  29. Morita, S.: Bifurcations in globally coupled chaotic maps. Phys. Lett. A 211(5), 258–264 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pareschi, F., Rovatti, R., Setti, G.: Simple and effective post-processing stage for random stream generated by a chaos-based RNG. In: Int. Symp. Nonlinear Theory and its Applications, pp. 383–386 (2006)

    Google Scholar 

  31. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 278, 2039–2049 (2000)

    Google Scholar 

  32. Schuster, H.G., Just, W.: Deterministic chaos: an introduction. Wiley-VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  33. Security Requirements for Cryptographic Modules, Federal Information Processing Standards 140-2 (2001)

    Google Scholar 

  34. Smale, S.: Differentiable dynamical systems. Bulletin of the Amer. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sprott, J.C.: Chaos and time-series analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  36. Tang, K.W., Kwok, H.S., Tang, K.S., Man, K.F.: A chaos-based random number generator for 8-bit micro-controller system. Int. J. Bifurcation and Chaos 18(3), 851–867 (2008)

    Article  Google Scholar 

  37. Tian, C., Chen, G.: Chaos in the sense of Li-Yorke in coupled map lattices. Physica A 376, 246–252 (2007)

    Article  MathSciNet  Google Scholar 

  38. Verhulst, P.F.: Recherches mathématiques sur la loi d’accroissement de la population. Nouv. mém. de l’Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1–41 (1845)

    Google Scholar 

  39. Verhulst, P.F.: Deuxième mémoire sur la loi d’accroissement de la population. Mém. de l’Academie Royale des Sci., des Lettres et des Beaux-Arts de Belgique 20, 1–32 (1847)

    Google Scholar 

  40. Visual Recurrence Analysis (2007), http://www.myjavaserver.com/nonlinear/vra/download.html

  41. Weisstein, E.W.: Baker’s map, MathWorld- A Wolfram Web Resource, mathworld.wolfram.com/BakersMap.html

  42. Willeboordse, F.H.: The spatial logistic map as a simple prototype for spatiotemporal chaos. Chaos 13(2), 533–540 (2003)

    Article  Google Scholar 

  43. Yang, W., Ding, E., Ding, M.: Universal scaling law for the largest Lyapunov exponent in coupled map lattices. Phys. Rev. Lett. 76(11), 1808–1811 (1996)

    Article  Google Scholar 

  44. Yen, J., Guo, J.: A new chaotic key-based design for image encryption and decryption. In: IEEE Int. Conf. Circuits and Systems, vol. 4, pp. 49–52 (2000)

    Google Scholar 

  45. Zhang, H., Chen, G.: Single-input multi-output state-feedback chaotification of general discrete systems. Int. J. of Bifurcation and Chaos 14(9), 3317–3323 (2004)

    Article  MATH  Google Scholar 

  46. Zhao, L., Elbert, E.N.: A network dynamically coupled chaotic maps for scene segmentation. IEEE Trans. on Neural Networks 12(6), 1375–1385 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, W.K.S., Liu, Y. (2011). Formation of High-Dimensional Chaotic Maps and Their Uses in Cryptography. In: Kocarev, L., Lian, S. (eds) Chaos-Based Cryptography. Studies in Computational Intelligence, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20542-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20542-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20541-5

  • Online ISBN: 978-3-642-20542-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics