Skip to main content

Optimum Design of Structures with Quick Group Search Optimization Algorithm

  • Chapter
Group Search Optimization for Applications in Structural Design

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 9))

Abstract

Based on the basic principles of an optimization algorithm, group search optimization (GSO) algorithm, two improved GSO, named quick group search optimizer (QGSO) and quick group search optimizer with passive congregation (QGSOPC), are presented in this chapter to deal with structural optimization design tasks. The improvement of QGSO has three main aspects: first, increase the number of ‘ranger’ when the target stops going forward. Second, use the search strategy of particle swarm optimizer (PSO) by considering the best group member and the best personal member. Employ the step search strategy to replace the visual search strategy. Third, reproduce the ‘ranger’ with hybrid of the group best member and the personal best member. the QGSOPC is a hybrid QGSO with passive congregation. The QGSO is tested by planar and space truss structures with continuous variables and discrete variables. The QGSOPC is only tested by discrete variables. The calculation results of QGSO and QGSOPC are compared with that of the GSO and HPSO. The results show that the QGSO and QGSOPC algorithms can handle the constraint problems with discrete variables efficiently, and the QGSOPC has more efficient search ability, faster convergent rate and less iterative times to find out the optimum solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dorigo, M., Di Caro, G., Gambardella, L.: Ant algorithms for discrete optimization. Artificial Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  3. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  4. Barnard, C.J., Sibly, R.M.: Producers and scroungers: a general model and its application to captive flocks of house sparrows. Animal Behavior 29(2), 543–550 (1981)

    Article  Google Scholar 

  5. Kaveh, A., Hassani, B., Shojaee, S., Tavakkoli, S.M.: Structural topology optimization using ant colony methodology. Engineering Structures 30(9), 2559–2565 (2008)

    Article  Google Scholar 

  6. Angeline, P.: Evolutionary optimization versus particle swarm optimization: philosophy and performance difference. In: Proceeding of the Evolutionary Programming Conference, San Diago, USA (1998)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  8. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R., Paton, R.C.: A particle swarm optimizer with passive congregation. BioSystem 78(1-3), 135–147 (2004)

    Article  Google Scholar 

  9. Li, L.J., Liu, F., Xu, X.T., Liu, F.: The group search optimizer and its application to truss structure design. Advances in Structural Engineering 13(1), 43–51 (2010)

    Article  MathSciNet  Google Scholar 

  10. Qin, G., Liu, F., Li, L.J.: A quick group search optimizer with passive congregation and its convergence analysis. In: 2009 International Conference on Computational Intelligence and Security, Beijing, pp. 249–253 (2009)

    Google Scholar 

  11. Shen, H., Zhou, Y.H., Niu, B., Wu, Q.H.: An improved group search optimizer for mechanical design optimization problems. Progress in Natural Science 19(1), 91–97 (2009)

    Article  Google Scholar 

  12. Snyman, J.A., Nielen, S., Roux, W.J.: A dynamic penalty function method for the solution of structural optimization problems. Applied Mathematical Modelling 18(8), 453–460 (1994)

    Article  MATH  Google Scholar 

  13. Li, L., Liu, F.: Harmony particle swarm algorithm for structural design optimization. In: Geem, Z.W. (ed.) Harmony Search Algorithms for Structural Design Optimization. Studies in Computational Intelligence, vol. 239, pp. 121–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Computers and Structures 87(7-8), 435–443 (2009)

    Article  Google Scholar 

  15. Qin, G., Liu, F., Li, L.J.: A quick group search optimizer and its application to the optimal design of double layer grid shells. In: 2nd International Symposium on Computational Mechanics, 12th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science, HK-Macau (2009) Paper number 309

    Google Scholar 

  16. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Computers and Structures 82(9-10), 781–798 (2004)

    Article  Google Scholar 

  17. Schmit Jr., L.A., Farshi, B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)

    Article  Google Scholar 

  18. Rizzi, P.: Optimization of multiconstrained structures based on optimality criteria. In: AIAA/ASME/SAE 17th Structures, Structural Dynamics and Materials Conference, King of Prussia, PA (1976)

    Google Scholar 

  19. Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimizer (HPSO) for optimization of pin connected structures. Computers and Structures 85(7-8), 340–349 (2007)

    Article  Google Scholar 

  20. Khot, N.S., Berke, L.: Structural optimization using optimality criteria methods. In: Atrek, E., Gallagher, R.H., Ragsdell, K.M., Zienkiewicz, O.C. (eds.) New Directions in Optimum Structural Design, John Wiley, New York (1984)

    Google Scholar 

  21. Adeli, H., Kumar, S.: Distributed genetic algorithm for structural optimization. Journal of Aerospace Engineering ASCE 8(3), 156–163 (1995)

    Article  Google Scholar 

  22. Sarma, K.C., Adeli, H.: Fuzzy genetic algorithm for optimization of steel structures. Journal of Structural Engineering ASCE 126(5), 596–604 (2000)

    Article  Google Scholar 

  23. He, D.K., Wang, F.L., Mao, Z.Z.: Study on application of genetic algorithm in discrete variables optimization. Journal of System Simulation 18(5), 1154–1156 (2006)

    Google Scholar 

  24. Wu, S.J., Chow, P.T.: Steady-state genetic algorithms for discrete optimization of trusses. Computers and Structures 56(6), 979–991 (1995)

    Article  MATH  Google Scholar 

  25. Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithm. Journal of Structural Engineering, ASCE 118(5), 1123–1250 (1992)

    Article  Google Scholar 

  26. Ringertz, U.T.: On methods for discrete structural constraints. Engineering Optimization 13(1), 47–64 (1988)

    Article  Google Scholar 

  27. Zhang, Y.N., Liu, J.P., Liu, B., Zhu, C.Y., Li, Y.: Application of improved hybrid genetic algorithm to optimize. Journal of South China University of Technology 33(3), 69–72 (2003) (in Chinese)

    Google Scholar 

  28. Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for discrete structural optimization. Engineering Optimization 37(7), 663–684 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, L., Liu, F. (2011). Optimum Design of Structures with Quick Group Search Optimization Algorithm. In: Group Search Optimization for Applications in Structural Design. Adaptation, Learning, and Optimization, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20536-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20536-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20535-4

  • Online ISBN: 978-3-642-20536-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics